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Abstract. Developments in reinforcement learning (RL) have allowed
algorithms to achieve impressive performance in complex, but largely
static problems. In contrast, biological learning seems to value efficient
adaptation to a constantly changing world. Here we build on a recently
proposed model of neuronal learning that suggests neurons predict their
own future activity to optimize their energy balance. That work pro-
posed a neuronal learning rule that uses presynaptic input to modulate
prediction error. Here we argue that an analogous RL rule would use
action probability to modulate reward prediction error. We show that
this modulation makes the agent more sensitive to negative experiences,
and more careful in forming preferences: features that facilitate adapta-
tion to change. We embed the proposed rule in both tabular and deep-Q-
network RL algorithms, and find that it outperforms conventional algo-
rithms in simple but highly-dynamic tasks. It also exhibits a “paradox
of choice” effect that has been observed in humans. The new rule may
encapsulate a core principle of biological intelligence; an important com-
ponent of human-like learning and adaptation - with both its benefits
and trade-offs.

Keywords: Reinforcement Learning · adaptation · lifelong learning ·
brain-inspired computing

1 Introduction

“Most work in biological systems has focused on simple learning problems. . .
where flexibility and ongoing learning are important, similar to real-world learn-
ing problems. In contrast, most work in artificial agents has focused on learning
a single complex problem in a static environment.” (Neftci and Averbeck) [22]

Real-world environments are constantly changing, and the ability to flexibly
adapt to these changes is imperative. But current A.I. does not always demon-
strate this ability to the same degree as animals. Here, building on a recent model
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of neuronal learning [20], we propose a reinforcement learning rule that demon-
strates more realistic flexibility - including both its benefits and its trade-offs.
We test the new reinforcement learning rule in multi-armed bandit tasks and a
task inspired by the Wisconsin Card Sorting Test - a psychological test used to
assess patients’ ability to adapt to changing reward structures. We demonstrate
that the new rule improves performance in dynamic decision-making tasks with
few to moderate numbers of choices (probably like the routine decision-making
faced by animals day-to-day), and that this comes at the expense of performance
when selecting between many choices - a paradox-of-choice effect that has been
observed in humans. We also discuss some connections between the new rule and
several other paradigms from across machine learning.

2 A New Reinforcement Learning Rule

2.1 Basic Building Blocks of Reinforcement Learning

A reinforcement learning agent must be able to estimate the value V of executing
action a while in state s - though during the early stages of learning its estimates
may not be very good. The agent must learn from each new experience in the
environment; improving the efficacy of its value estimates for the future. Suppose
at time t the agent is in state st, executes action at, and then finds itself in the
new state st+1 with reward r. The actual, experienced value of this event can be
formulated as reward r t plus the predicted value of being in the new state st+1:

V (st, at)actual = rt + γV (st+1) (1)

Here γ is a discount factor applied to expected future rewards (γε [0, 1]).
The “temporal difference error” δ expresses the difference between actual and
predicted values:

δt = Vactual − V = rt + γV (st+1) − V (st, at) (2)

The temporal difference error is a measure of the agent’s surprise at the recent
experience, and is a useful mechanism for learning. In the canonical Q-learning
algorithm, for example, the agent maintains a table of value estimates that are
updated proportional to δ, and according to a learning rate parameter α:

V (st, at) ← V (st, at) + αδt (3)

The agent selects actions for execution according to a policy π. For the pur-
pose of this paper, let us assume π is a softmax function that calculates the
probability of selecting action a out of the set of actions A, based on current
value estimates, and according to a temperature parameter τ :

π (s, a) = P (at = a|st = s) =
eV (s,a)/τ

∑
bεA eV (s,b)/τ

(4)
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Thus the learning process consists of iteratively using value estimates to
select actions, and using the observed results to improve the value estimates.

2.2 The New Rule

Building on the Contrastive Hebbian Learning rule [1,3] Scellier and Bengio
proposed “Equilibrium Propagation” (EP) as a new, more biologically plausible
model for learning in artificial neural networks [24]. EP envisions the network as
a dynamical system that learns in two phases. First is the “free phase”, in which
an input is applied, and the network is allowed to equilibrate. In the second or
“weakly clamped” phase, output neurons are soft-clamped or nudged toward a
target value. Weights are then updated according to the rule:

ΔWij ∝
[
uc

iu
c
j − uf

i uf
j

]
(5)

where i and j are the indices of neurons on either side of the weight/synapse
(note that EP assumes symmetric connections between neurons), uc is the neu-
ron’s squashed clamped-phase activation, and uf is the neuron’s squashed free-
phase activation. Luczak, et al. [20] showed that free-phase activity can be well
predicted based on past activity, and proposed the following alternative rule:

ΔWij ∝ uc
i (u

c
j − ũf

j ) (6)

where the tilde indicates the neuron’s prediction of its own free-phase equilib-
rium given the input. They showed that this rule can explain learning without
requiring two distinct phases, as free-phase activity can be predicted in advance.

Importantly, the rule arises naturally as a result of a neuron acting to opti-
mize its own energy balance, and hints at an explanation for consciousness [19],
suggesting that it may encapsulate some principle of general intelligence. This
motivates our current exploration of an analogous reinforcement learning rule.
Examining this new rule, we see the update consists of the prediction error term

(uc
j − ˜

uf
j ), modulated by the presynaptic activation uc

i . Here we abstract the
basic form of this rule to produce a rule applicable to reinforcement learning.
The prediction error term is easy to place in a reinforcement learning context:
it is analogous to the temporal difference error δ. But if we want to formulate a
reinforcement learning rule corresponding to the neuronal one, we need a scaling
or modulating factor analogous to the presynaptic activation. Since the presy-
naptic activation is the input to the neuron and the cause of its resulting activity,
a natural analog could be π(st, at); the input to the agent’s environment and
the cause of the resulting experience. We can then formulate a reinforcement
learning rule as a modulation of δ by π(st, at):

ΔV (st, at) ∝ πt(st, at)δt = πt(st, at) [r + γV (st+1) − V (st, at)] (7)
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The analogy between the neuronal learning rule and the new RL rule is
illustrated in Fig. 1.

Fig. 1. We abstract the biologically-plausible neuronal learning rule of Luczak et al.
to create an analogous rule for reinforcement learning. To calculate a weight update,
the prediction error is modulated by the presynaptic input that caused the neuron’s
activity. In other words, a cause is used to modulate the error in predicting the effect.
For an analogous reinforcement learning rule, updates are calculated by using action
probability (the cause of the agent’s experience) to modulate reward prediction error
(the error in predicting the effect of that action)

2.3 Effect of the New Rule

Scaling the temporal difference error by π(st, at) has two effects:

1. It magnifies the agent’s reactions to negative experiences. If an action
that was thought to be valuable (i.e. π is large) brings a negative out-come,
the scaled (negative) reward-prediction error will be large. This will depress
the perceived value of that action, creating an immediate aversion to it.

2. It slows down the development of an action preference - making the
agent somewhat more careful in selecting actions. If the agent is unlikely to
take an action, the scaled reward prediction error will be small - even if the
experience was rewarding. Thus, the agent needs a lot of “convincing” that
an un-likely action is desirable.

Thus, modulating the temporal difference error by the action probability
π(st, at) in this way biases the agent’s learning somewhat toward negative expe-
riences. We hypothesize this will allow the agent to adapt to environmental
changes: when a previously rewarding action is no longer rewarded, the agent
will quickly suppress its perceived value and carefully search for a new preference.
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3 Experiments

3.1 Experiment 1 - Changing Multi-armed Bandit

A changing, n-armed bandit experiment was designed to test the new rule’s
ability to adapt to changes. Multi-armed bandits are a simple experiment often
used to illustrate learning algorithms’ performance [30]. The bandit was given
one high-reward arm with preward = 0.9 and one no-reward arm with preward =
0. The rest of the arms had random reward probabilities preward ∼ U(0.25, 0.75).
The agent receives a +1 reward when the arm it samples is rewarded, and a −1
reward otherwise. The reward probabilities are periodically rotated in such a
way that all reward probabilities change, and the arm that was previously high-
reward becomes no-reward.

The new rule was implemented in a tabular reinforcement learning agent
by modifying the classical Q-learning algorithm to use Eq. 7 as its update rule.
This algorithm maintains a table of the perceived values of each action and
updates the relevant value after each experience. We also implemented a variety
of standard bandit-solving algorithms for comparison: a conventional Q-learning
algorithm [27] and an Upper Confidence Bound (UCB) algorithm [2]. All these
algorithms are memoryless and so cannot learn the pattern to the reward proba-
bilities’ rotation: they perceive each change as a random, unexpected, and com-
plete change to the reward landscape. For reference, we also included a UCB
algorithm which has the advantage of being automatically reset each time the
rewards change - note the other algorithms are not informed of changes this way;
they must figure it out themselves. Thus, this “perfectly-informed” UCB algo-
rithm represents a performance cap that the other algorithms are not expected
to reach.

In our experiments each algorithm was allowed to select the best values for
learning rate αε[0, 2] and softmax temperature τε {0.5, 1, 2}. Note that α is con-
ventionally set to be (much) less than 1, but a large value of α can also produce
a quick response to environmental changes, so here we allow each algorithm to
select α as high as 2. The parameter searches and the experiments themselves
were performed on different bandit instances. The cumulative reward for a 7-
armed bandit with changes every 100 steps is shown in Fig. 2.

We note that the conventional Q learning algorithm achieved quick reaction
to reward changes by self-selecting a large learning rate α (usually somewhere
between 0.7 and 1.5). But this large α also causes the algorithm to switch to
a new arm very quickly when it finds a chance reward at that arm - some-
times it switches too quickly and selects a sub-optimal arm, and cumulative
reward suffers as a result. The new algorithm, on the other hand, scales reward-
prediction-error down when the probability of selecting that arm is low, and so
spends more time convincing itself that a new arm is desirable. This longer time
spent identifying the new high-reward arm yields more reward overall, as shown
in Fig. 2.

To quantify this extra time taken to develop a new arm preference, we first
ran a 10-period moving average on the probabilities of selecting each arm. When
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the maximum probability of any arm except the previously high-reward arm
exceeded 50%, we considered the agent to have developed a new preference for
that arm. Time-to-preference as the number of bandit arms increases is shown
in Fig. 3.

Fig. 2. Cumulative reward obtained on a 7-armed bandit with reward probabilities that
change every 100 steps. The “perfectly-informed UCB” algorithm is reset (informed)
when the reward probabilities change, and so represents a cap on possible performance.
The new learning rule is not given this information, yet it performs almost as well. The
shaded area is the 95% confidence interval of the mean over 10 repetitions.

3.2 Experiment 2 - Task Inspired by the Wisconsin Card Sorting
Test

The Wisconsin Card Sorting Test is a neuropsychological test used to assess
patients’ ability to adapt to a changing set of rules [4], and has historically
been used to identify brain injury and neurodegenerative disease [21]. The test
presents patients with cards that can be matched based on several features, such
as color, shape, number, etc. The patients are not told the correct matching
criteria, but are rewarded when they make a match correctly. The rewarded
matching criteria changes periodically throughout the test: healthy patients can
generally adapt quickly when the rule changes, while patients with prefrontal
cortex damage cannot.

Here we simulate a similar test using a multiclass classification task. Normally
distributed clusters of points are created in n-dimensional space and assigned to
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Fig. 3. Time (steps) taken to develop a preference for a new arm after each change,
for varying numbers of bandit arms. See text for description of how “preferences” were
detected. The new rule is more careful in evaluating options, and this helps it to identify
the optimal arm when the number of choices is small. The shaded area represents the
95% confidence interval of the mean over 20 repetitions.

each of k classes. The agent is rewarded when it correctly matches a randomly-
drawn point to its current class, but the classes are periodically scrambled (such
that all the points previously assigned to class “0” now belong to class “2”, for
example).

For this test we use a deep Q network based on the new rule in Eq. 7. The
network is a perceptron with one hidden layer of 20 neurons, and tanh squashing
functions. We use separate policy and value networks that synchronize every
5 trials, and a replay buffer of the last 10 trials. The same network is also
instantiated with a conventional update rule for comparison. Figure 4 shows the
new rule allowing the network to adapt to each change, while the conventional
deep Q network adapts less effectively. Here the classification rule is changed
every 100 steps.

3.3 The Paradox of Choice

As humans we often take for granted our ability to change: to update our
beliefs in response to new information, or to change a strategy when necessary.
But our gift for quick adaptation in everyday situations comes with a trade-
off: less-than-optimal performance in situations with many choices. Psychologist
Barry Schwartz calls this “the paradox of choice” [25]: As the number of choices
increases, our ability to select a satisfying option decreases and our preferences
become weaker [9].

Our experiments show a similar paradox-of-choice effect, illustrated in Fig. 5.
The new rule creates a bias toward negative experiences that - when the reward
landscape changes - quickly depresses perceived value of the previously high-
reward arm, and also makes the agent more careful in choosing a new preferred
arm. This is an advantage when the number of arms is small, but can become
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Fig. 4. Cumulative reward obtained in the 4-class version of the task inspired by the
Wisconsin Card-Sorting Test, with classes being shuffled every 100 steps. The shaded
area is the 95% confidence interval of the mean over 10 repetitions.

Fig. 5. Average reward-per-step obtained in the n-armed bandit task (left) and “card
sorting” task (right). The new rule provides an advantage over conventional learn-
ing when the number of choices is small, with the trade-off of a disadvantage when
the number of choices is large. This trade-off is likely favorable for many real-world
situations, and similar to the “paradox of choice” effect observed in humans.
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a disadvantage if there are many arms. In large-n cases, the agent takes too
long evaluating new arms and sometimes fails to select one in time. Thus the
same effects of the new rule that allow effective adaptation to environmental
changes involving few choices, hinder it when the number of choices becomes
large. This trade-off likely works heavily in favor of biological agents in the
natural world, who rarely have to select between many attractive options, but
must continuously adapt to simple though potentially dramatic environmental
changes (e.g. the animal discovers that its favorite watering hole now has an
alligator in it, and so reverts to a different water source).

4 Discussion

The new rule demonstrates some features of human-like learning. Humans are
known to increase decision-making time as the number of options increases, in a
relationship known as Hick’s law [15]. Our new rule exhibits similar increasing
decision time in Fig. 3, while the conventional learning algorithm does not. A
paradox-of-choice effect is also observed in Fig. 5, where the new rule outperforms
conventional learning until the number of choices becomes large. Humans exhibit
this trade-off as well, where “selections made from large assortments can lead to
weaker preferences” [9] though it should be noted that the relationship between
number of choices and the choice overload effect in humans is complex [10].
The new rule is derived from a recently proposed neuronal predictive learning
rule, and thus may encapsulate some basic principles of learning and intelligence
that exist at both the neuronal and system levels. We hope this paper will
add to the important conversation around A.I. that can adapt to the constant
environmental changes of the real world.

The topics of adaptability and continuous learning represent a growing
research field [6,14,17,18], and paradigms for detecting and responding to envi-
ronmental change do exist in the machine learning literature. For example,
model-based reinforcement-learning approaches maintain an internal model of
the world, with which new experiences can be compared to detect environmen-
tal changes. Previous work has stored world models and switched between them
when recent experiences indicated an environmental change [7,8], adapted time
series change-point algorithms to detect environmental changes [23], and used
consciousness-inspired approaches to improve the generalization of a model to a
new task [32]. However, these approaches require maintenance of a world model,
which can be costly. Ultimately the quick, model-free effect of our rule could
work well in conjunction with the more complex goal-oriented-planning effect of
a model-based approach: the brain employs both model-free and model-based
mechanisms [26], and the combination likely holds promise for A.I. as well.

Another related approach is transfer-learning or meta-reinforcement learning,
which aims to accelerate learning in new tasks from a previously experienced fam-
ily. One meta-RL approach [5] uses a particular recurrent (memory-equipped)
network architecture that learns general features of a task family through back-
propagation, allowing the recurrent dynamics to quickly tune into details of a
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new task from the family, in what is thought to be a brain-like mechanism [29].
Meta-RL is currently an active research field [11,13,28]. This general approach
could be seen as adaptation through knowledge transfer, though unfortunately
the network must be informed (reset) each time the task changes. Again, the
quick memory-free effect provided by our rule could work well in conjunction
with such transfer-learning methods, resulting in more human-like learning.

The idea of modulating a prediction error appears elsewhere in machine learn-
ing literature, and modulating the error in different ways or by different signals
produces different effects. Here we have shown that modulating reward pre-
diction error by action probability creates a human-like adaptation-to-change
effect, including improved performance in simple but dynamic tasks, as well as
a paradox-of-choice effect. Conversely, the Inverse Propensity Score Estimation
(IPSE) approach used in counterfactual learning uses the inverse of the probabil-
ity as a modulating factor [12,16]. This can have the effect of de-biasing learning
from data collected in a population that differs from a target population. How-
ever, during online learning of dynamic tasks it would result in slower adaptation;
opposite to our rule. We could also consider REINFORCE-style reinforcement
learning algorithms, which modulate a prediction error by a “characteristic eligi-
bility” term that expresses the gradient of the action probability with respect to
the parameter being updated [31]. This quickly makes rewarding actions more
likely - in static environments where the gradient has consistent meaning. Our
rule, on the other hand, demonstrates a similar learning effect in dynamic tasks.
Making predictions is a central operation of the brain, and it is likely that neural
circuits modulate prediction errors in many ways to get the right effect at the
right time, creating what we know as human-like learning.

Among the various effects that can be obtained by modulating prediction
errors in different ways, we believe the one proposed here deserves special future
study for two reasons. First, the ability to cope gracefully in dynamic situations
is still relatively understudied (high-profile successes of machine learning are
typically in static environments like games). Second, since this new RL rule is
derived from a biologically plausible neuronal learning rule, it creates a link
between neuron learning and system-level learning which could shed light on
universal principles of learning and intelligence.

5 Code

See https://github.com/echalmers/modulated td error for code accompanying
this paper. Experiments described in this paper used this code and were executed
on commodity hardware without a GPU.

Acknowledgements. This work was supported by Compute Canada, the Natural
Sciences and Engineering Research Council of Canada (NSERC), and the Canadian
Institutes of Health Research (CIHR) grants to Artur Luczak.

https://github.com/echalmers/modulated_td_error


RL with Brain-Inspired Modulation Improves Adaptation 33

References

1. Almeida, L.B.: A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment. In: Artificial Neural Networks: Concept Learning, pp.
102–111. IEEE Press, January 1990

2. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3(Nov), 397–422 (2002)

3. Baldi, P., Pineda, F.: Contrastive learning and neural oscillations. Neural Comput.
3(4), 526–545 (1991). https://doi.org/10.1162/neco.1991.3.4.526

4. Berg, E.A.: A simple objective technique for measuring flexibility in thinking.
J. Gen. Psychol. 39(1), 15–22 (1948). https://doi.org/10.1080/00221309.1948.
9918159

5. Botvinick, M., Ritter, S., Wang, J.X., Kurth-Nelson, Z., Blundell, C., Hassabis, D.:
Reinforcement learning, fast and slow. Trends Cogn. Sci. 23(5), 408–422 (2019).
https://doi.org/10.1016/j.tics.2019.02.006

6. Caccia, M., et al.: Online Fast Adaptation and Knowledge Accumulation
(OSAKA): a new approach to continual learning. In: Advances in Neural Informa-
tion Processing Systems, vol. 33, pp. 16532–16545. Curran Associates, Inc. (2020)

7. Chalmers, E., Contreras, E.B., Robertson, B., Luczak, A., Gruber, A.: Context-
switching and adaptation: brain-inspired mechanisms for handling environmental
changes. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp.
3522–3529, July 2016

8. Chalmers, E., Luczak, A., Gruber, A.J.: Computational properties of the hip-
pocampus increase the efficiency of goal-directed foraging through hierarchical
reinforcement learning. Front. Comput. Neurosci. 10, 128 (2016)

9. Chernev, A.: When more is less and less is more: the role of ideal point availabil-
ity and assortment in consumer choice. J. Consum. Res. 30(2), 170–183 (2003).
https://doi.org/10.1086/376808
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