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Abstract. This module will explain what the Congruence Subgroup Property is, and why it is important. Then “Mennicke

symbols” (a tool from Algebraic K-Theory) will be used to show that SL(3,Z) has the property, and a stronger property called
“bounded generation.”

Lecture I. Introduction to the
Congruence Subgroup Property

1. Statement of the Congruence Subgroup
Property for SL(3, Z)

Note that Z → Z/nZ is a ring homomorphism, so

ϕn : SL(3, Z) → SL(3, Z/nZ)

is a group homomorphism. Since the ring Z/nZ is obviously
finite, it is clear that the group SL(3, Z/nZ) is finite, so the
image of ϕn is finite. Hence,

Γn := kerϕn

is a (normal) subgroup of finite index in Γ = SL(3, Z).
These subgroups are the most obvious finite-index sub-

groups of Γ, and they have a special name:

Definition. Γn is a principal congruence subgroup of Γ.

By definition, Γn is the inverse image of {e}, the triv-
ial subgroup. We can generalize the above construction by
replacing {e} with a more general subgroup:

If X is any subgroup of SL(3, Z/nZ),
then ϕ−1

n (X) is a finite-index subgroup of Γ.
It is a congruence subgroup of Γ.

Equivalently:

Definition. A subgroup H of Γ is a congruence subgroup if
it contains a principal congruence subgroup.

Thus, it is obvious that every congruence subgroup of
SL(3, Z) is a subgroup of finite index. It is not at all obvious
that the converse is true:

Theorem (Bass-Lazard-Serre (1964), Mennicke (1965)). If
k ≥ 3, then every finite-index subgroup of SL(k, Z) is a con-
gruence subgroup.

For short, we say that SL(k, Z) satisfies the Congruence
Subgroup Property (“CSP”) when k ≥ 3. We will see later
that this is false for k = 2.

Remark. If Γ is the fundamental group of a manifold M ,
then the Congruence Subgroup Property is a quite explicit
description of all the finite covers of M .

2. CSP for other groups

2.1. Lattices in semisimple Lie groups.

Conjecture (Serre). Let Γ be an irreducible, arithmetic lat-
tice in a connected, semisimple Lie group G. (And assume G
is “algebraically simply connected.”) If R-rank G ≥ 2, then
some finite-index subgroup of Γ has the CSP.

Remark.

• The conjecture is true whenever G/Γ is not compact
[Raghunathan].

• Many, but not all, additional cases have been veri-
fied.

• Serre conjectured, conversely, that CSP fails when-
ever R-rankG = 1, but it seems quite possible that
(some? all?) lattices in Sp(1, n) will turn out to have
CSP.

• I think it is known that hyperbolic groups (i.e., lat-
tices in SO(1, n)) do not have the Congruence Sub-
group Property.

2.2. The automorphism group of a free group. Note
that, for Γ = SL(3, Z), the principal congruence subgroup Γn

consists of the automorphisms of Z3 that act trivially on the
finite quotient Z3/nZ3. This has a natural generalization to
the automorphism group of a free group.

Definition.
• Let N be a (characteristic) subgroup of finite index

in Fn, so Aut(Fn) acts on the finite group Fn/N .
• The kernel of this action is a principal congruence

subgroup of Aut(Fn).
• Any subgroup that contains a principal congruence

subgroup is a congruence subgroup.

The following question is attributed to Ihara (see [4,
p. 1679]). I learned of it from A. Rapinchuk.

Wide open problem (Ihara). Is every finite-index sub-
group of Aut(Fn) a congruence subgroup?

Exercise. Let H be a subgroup of finite index in Fn. Show
that

{α ∈ Aut(Fn) | α(xH) = xH, ∀x ∈ Fn }

is a congruence subgroup.
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2.3. Braid groups and mapping class groups. Accord-
ing to notes [6] from a recent seminar by Jordan Ellenberg
at the University of Wisconsin:

“Braid group has the congruence subgroup prop-
erty CSP. This was discovered by Thurston last
year (2007), but known by algebraic geometers Diaz-
Donagi-Harbater, Asada (2001) earlier. This is for
any n, so we don’t get any SL2(Z) weirdness. For Γg

(the mapping class group of genus g things) it is sug-
gested to have this property but not known.”

3. SL(2, Z) does not have the CSP

Let F be a finite quotient of Γ = SL(2, Z). If Γ has
the CSP, then F is a quotient of Γ/Γn, for some n. Since
Z/nZ ∼=

⊕
Z/pki

i Z, we have

Γ
Γn

∼=
⊕ Γ

Γ
p

ki
i

,

so it is easy to see that the only nonabelian factors in a
composition series of F are of the form SL(2, Z/pZ).

On the other hand, SL(2, Z) is almost a free group, so
its finite quotients include every finite simple group in their
composition series. This is a contradiction.

4. Applications of the CSP

4.1. Normal subgroups of SL(3, Z)SL(3, Z)SL(3, Z). The Margulis Nor-
mal Subgroups Theorem tells us that every infinite, normal
subgroup of Γ = SL(3, Z) has finite index. (It is easy to
find all the finite, normal subgroups; in fact, for the case of
SL(3, Z), there are none at all, other than {e}.) Thus, the
Congruence Subgroup Property provides a classification of
all the (infinite) normal subgroups of Γ.

4.2. Subgroup growth [3]. Let Sn be the number of sub-
groups of index ≤ n in Γ; i.e.,

Sn = # {H ⊂ Γ | |Γ : H| ≤ n } .

Γ has the CSP iff

Sn = n(C±ε) log n/ log log n.

If Γ does not have the CSP, then its subgroup growth is
larger:

∃ε > 0, Sn > nε log n.

4.3. Abelian quotients. The estimate on subgroup growth
(or other, easier arguments) implies that if Γ has the CSP,
then it has no infinite, abelian quotients.

Remark (Virtual Haken Conjecture). It is believed that
hyperbolic groups behave the opposite way: W.Thurston
conjectured that if Γ is any lattice in SO(1, n), then some
finite-index subgroup of Γ has an infinite cyclic quotient.

4.4. Profinite completion. Recall Zp, the ring of p-adic
integers is:

lim
←−

Z
pnZ

= { a0 + a1p + a2p
2 + · · · | 0 ≤ ai < p }.

Lemma.
⊕

p Zp is the profinite completion Ẑ of Z, i.e.,⊕
p

Zp
∼= lim
←−

Γ
N

,

where Γ/N ranges over all the finite quotients of Γ.

Proof. Suppose ϕ : Z � F , where F is a finite group. Then

F ∼=
Z
nZ

∼=
⊕ Z

pkiZ
,

so ϕ extends to a unique ϕ̂ :
⊕

p Zp → F . �

The Congruence Subgroup Property calculates the profi-
nite completion of SL(3, Z):

̂SL(3, Z) =
⊕

p

SL(3, Zp).

4.5. Superrigidity.

Theorem (Bass-Milnor-Serre, Raghunathan). Let
• Γ = SL(3, Z), and
• ρ : Γ → GL(n, R) be a finite-dimensional representa-

tion of Γ.
Then ρ almost extends to a representation ρ̃ : SL(3, R) →
GL(n, R).

Sketch of proof. For simplicity, assume ρ : Γ → SL(n, Q).
Since Γ is finitely generated, we have ρ(Γ) ⊂ SL(n, Zp),
for some p. Since SL(n, Zp) is profinite, then ρ extends
to ρ̂ : ̂SL(3, Z) → SL(n, Zp). By the CSP, this amounts to
a map SL(3, Zp) → SL(n, Zp). The theory of (p-adic) Lie
groups tells us that any such homomorphism is analytic; in-
deed, it is defined by polynomials. Since ρ(Γ) ⊂ SL(n, Q),
these polynomials have rational coefficients, so they define a
homomorphism S̃L(3, R) → SL(n, R). �
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