Automorphisms of direct products of some circulant graphs

Dave Witte Morris University of Lethbridge, Alberta, Canada https://deductivepress.ca/dmorris dmorris@deductivepress.ca

Abstract. The direct product of two graphs *X* and *Y* is denoted $X \times Y$. Its automorphism group contains a copy of the direct product of Aut(X) and Aut(Y), but it is not known when this inclusion is an equality, even for the special case where *X* is a circulant graph and $Y = K_2$ is a connected graph with only 2 vertices. Joint work with Ademir Hujdurović and Đorđe Mitrović sheds some light on this special case, including a complete answer when the valency of *X* is less than 8.

https://deductivepress.ca/dmorris/talks/ AutDirProd-Waterloo2022.pdf

Exercise

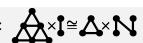
Choose a graph product $* (= \square, \boxtimes, \times)$. $(V(X * Y) = V(X) \times V(Y))$ Show that every (finite) graph X has a prime decomposition for *:

- $\bullet \ X \cong X_1 * X_2 * \cdots * X_n.$
- No X_i can be written as Y * Z (with Y, Z smaller than X_i).

Theorem (Sabidussi-Vizing 1960/1963, Dörfler-Imrich 1970)

X connected \Rightarrow prime decomposition is unique for \square and \boxtimes . (up to permutation of the factors and isomorphism)

Fact. Prime decomposition is **not** unique for \times : \times \times \times \times \times



Rem. Prime decomp is not unique for \Box if graphs not connected: $(1+x+x^2)(1+x^3) = (1+x+\cdots+x^6) = (1+x^2+x^4)(1+x)$ in $\mathbb{Z}^+[x]$ is a non-unique prime factorization.

Let $x = \text{graph } (= K_2)$. (+ is disjoint union and $x^n = x \square x \square \cdots \square x$)

Graph products

Given two graphs X and Y, construct a new graph X * Y. Most important: Cartesian \Box , strong \boxtimes , direct \times .

$$V(\mathbf{X} * \mathbf{Y}) = \{ (\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in V(X), \mathbf{y} \in V(Y) \} = \mathbf{V}(\mathbf{X}) \times \mathbf{V}(\mathbf{Y}) \}$$

Definition (direct product ×)

(categorical product, tensor product, Kronecker product, ...)

$$(x_1, y_1) \xrightarrow{X \times Y} (x_2, y_2) \Leftrightarrow x_1 \xrightarrow{X} x_2 \text{ and } y_1 \xrightarrow{Y} y_2$$
Eg. \times

- commutative: $X * Y \cong Y * X$
- $V(X) \times \{1\}$ no edges
- associative: $(X * Y) * Z \cong X * (Y * Z)$

Note. $X \times K_2$ is bipartite.

Canonical bipartite double cover of X.

 $V(X) \times \{0\}$ (no edges

 \square , \boxtimes , \times are natural graph-theoretic constructions:

$$X \stackrel{\alpha}{\cong} X', Y \stackrel{\beta}{\cong} Y' \Rightarrow X * Y \stackrel{\alpha \times \beta}{\cong} X' * Y'.$$

So Aut $X \times$ Aut $Y \subseteq$ Aut $(X * Y)$.

Exercise

 $\operatorname{Aut} X \times \operatorname{Aut} Y = \operatorname{Aut}(X * Y) \Rightarrow X \text{ relatively prime to } Y \text{ for } *.$

Theorem (Sabidussi-Vizing 1960/1963)

Converse is true for \Box . (if *X* and *Y* are connected)

Also for \boxtimes , but need an additional technical condition.

Bad news

Converse is **not** true for \times :

we do not understand Aut $(X \times Y)$, even if $Y = K_2 = \bullet - \bullet$.

Defn $\begin{pmatrix} \text{Marušič-Scapellato} \\ \text{-Zagaglia} & 1989 \end{pmatrix}$. *X* is *unstable* if $\text{Aut}(X \times K_2) \neq \text{Aut} X \times \text{Aut} K_2$.

Defn (Marušič et al.). *X* is *unstable* if $Aut(X \times K_2) \neq Aut X \times Aut K_2$.

Definition (Lauri -Mizzi-Scapellato 2019)

 $(\alpha_0, \alpha_1) \in S_{V(X)} \times S_{V(X)}$ is a *2-fold automorphism* if $v - w \iff \alpha_0(v) - \alpha_1(w)$ Obvious: $\alpha_0 = \alpha_1 \in \text{Aut}(X)$.

Exercise (Marušič-Scapellato-Zagaglia 1989)

Assume $X \times K_2$ is connected (i.e., X is connected and not bipartite). Show: X is unstable $\iff X$ has a nonobvious 2-fold automorphism.

Hint: (\Leftarrow) Define $\alpha(x, i) = (\alpha_i(x), i)$.

Exercise (an obvious cause of instability)

X is unstable if X has "twin" vertices. even if connected

Hint: Assume {neighbours of a} = {neighbours of b}. ("twins") $\exists \alpha_0 \in \text{Aut } X$ that interchanges a and b, but fixes all other verts. Let $\alpha_1(v) = v$.

Dava Morris (II of Lathbridge) Automorphisms of direct products ACT Waterloo Sept 2022

Bad news: We do not understand $\operatorname{Aut}(X \times Y)$, even if $Y = K_2 = \bullet \bullet$.

- both *X* and *Y* not bipartite: good [Dörfler]
- **both** *X* and *Y* bipartite: **bad** [exercise]

Open case: X is not bipartite and *Y* is bipartite.

The simplest nontrivial bipartite graph is K_2 .

That is one reason why it is important to study $Aut(X \times K_2)$.

(Another reason: $X \times K_2$ is the canonical double cover.)

But it is not just $\underline{\mathbf{a}}$ special case — it is the $\underline{\mathbf{main}}$ case:

Proposition (classical?)

Assume $\operatorname{Aut}(X \times K_2) = \operatorname{Aut} X \times \operatorname{Aut} K_2$. (and X is not bipartite) Then $\operatorname{Aut}(X \times Y) = \operatorname{Aut} X \times \operatorname{Aut} Y$

if X is coprime to Y in an appropriate sense.

Eg., If *X* and *Y* are circulant graphs, then suffices to assume gcd(#V(X), #V(Y)) = 1.

Bad news

We do not understand $\operatorname{Aut}(X \times Y)$, even if $Y = K_2 = \bullet - \bullet$.

Good news

The problem only arises for graphs that are bipartite.

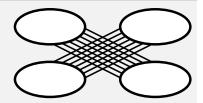
Theorem (Dörfler 1974)

 $\operatorname{Aut}(X \times Y) = \operatorname{Aut} X \times \operatorname{Aut} Y \text{ if } X \text{ and } Y \text{ are connected, twin-free,}$ and not bipartite and X is \times -coprime to Y.

Exercise

Assume *X* and *Y* are bipartite (and have more than one vertex).

- **1** Show $X \times Y$ is not connected.
- Show $\operatorname{Aut}(X \times Y) \neq \operatorname{Aut} X \times \operatorname{Aut} Y$ if $\operatorname{Aut} X$ and $\operatorname{Aut} Y$ are nontrivial.



Defn (Marušič et al.). *X* is *unstable* if $Aut(X \times K_2) \neq Aut X \times Aut K_2$.

Open problem (Steve Wilson 2008)

Which connected, nonbipartite, twin-free circulant graphs are unstable?

Theorem (Fernandez-Hujdurović 2022)

None if # vertices is odd.

Theorem (Hujdurović-Mitrović-Morris 2021)

None of order n

 \iff n is odd or $n \le 8$ or n = 2pwhere p is prime and $p \equiv 3 \pmod{4}$.

Down Marrie (U. f.Latheridae)

Open problem (Steve Wilson 2008)

Which connected, twin-free, nonbipartite, circulant graphs are unstable?

Assume X is a connected, twin-free, nonbipartite, circulant graph. Also assume |V(X)| is even.

Characterize cases where $\operatorname{Aut}(X \times K_2) \neq \operatorname{Aut} X \times \operatorname{Aut} K_2$.

Uncommon (?): for order ≤ 50 , $\approx 70,000/3,600,000 < 2\%$ (?)

Partial answer [Wilson]: 4 conditions (C.1 - C.4) that imply unstable.

Proposition (Wilson type C.4)

Circ (n; S) is unstable if $\exists m \in \mathbb{Z}_n^{\times}$, such that $mS = S + \frac{n}{2}$.

Proof. Let $\alpha_0(x) = mx$ and $\alpha_1(x) = \alpha_0(x) + \frac{n}{2}$.

Easy generalization (Hujdurović-Mitrović-Morris 2021)

Unstable if
$$Circ(n; S) \stackrel{\alpha_0}{\cong} Circ(n; S + \frac{n}{2})$$
.

Dayo Morris (II of Lathbridge) Automorphisms of direct products ACT Waterloo Sept 200

Open problem (Steve Wilson 2008)

Which connected, twin-free, nonbipartite, circulant graphs are unstable?

Wilson [2008] conjectured that (C.1 – C.4) are a complete answer. Counterexample: Circ(24; \pm 2, \pm 3 \pm 8, \pm 9, \pm 10) [Qin-Xia-Zhou]. Our generalizations provide infinite families of counterexamples.

On the other hand, by lengthy case-by-case analysis:

Theorem (Hujdurović-Mitrović-Morris 2022+)

Wilson found all unstable circulants of valency ≤ 7 .

Counterexample of valency 8: Circ(48; \pm 3, \pm 4, \pm 6, \pm 21).

In fact, we list all unstable circulants with valency ≤ 7 .

Example (Hujdurović-Mitrović-Morris 2022+)

Unstable connected, nonbipartite, twin-free circulants of valency 5 are:

- Circ $(12k; \pm s, \pm 2k, 6k)$ with s odd, which has Wilson type C.1.
- Circ $(8; \pm 1, \pm 3, 4)$, which has Wilson type C.3.

Open problem (Steve Wilson 2008)

Which connected, twin-free, nonbipartite, circulant graphs are unstable?

Partial answer [Wilson]: 4 conditions (C.1 - C.4) that imply unstable.

Here is another one:

 $(S_e = S \cap 2\mathbb{Z}_n \text{ and } S_o = S \setminus S_e)$

Proposition (Wilson type C.1)

Circ(n; S) is unstable if \exists nontrivial subgroup H of \mathbb{Z}_n , $S_e + H = S_e$.

Proof. Fix
$$h \in H \setminus \{0\}$$
. Let $\alpha_i(v) = \begin{cases} v & \text{if } v \equiv i \pmod{2}; \\ v+h & \text{if } v \not\equiv i \pmod{2}. \end{cases}$

Can generalize to also include (C.2) and (C.3) as special cases.

Proposition (Hujdurović-Mitrović-Morris 2021)

Let H, K nontriv subgrps of \mathbb{Z}_n with |K| even. Circ(n; S) unstable if

- \bullet $S + H \subseteq S \cup (K_o + H)$ and $H \cap K_o = \emptyset$, or
- ② $(S \setminus K_o) + H \subseteq S \cup K_o$ and either $|H| \neq 2$ or |K| is divisible by 4.

(C.1 is the special case with $K = \mathbb{Z}_n$)

Daya Morris (II of Lathbridge) Automorphisms of direct products ACT Waterloo Sept 2022 10/1

Open problem (Steve Wilson 2008)

Which connected, twin-free, nonbipartite, circulant graphs are unstable?

Partial answer: our generalizations of Wilson (C.1 - C.4).

Another infinite family:

The connected components of $Circ(n; S_e)$ are unstable, and S_o is invariant under sufficiently many translations.

Proposition (Hujdurović-Mitrović-Morris 2021)

Circ(n; S) is unstable if

- Circ $(\frac{n}{2}; \frac{1}{2}S_e)$ has a nonobvious 2-fold automorphism (α_0, α_1) ,
- $H = \langle \alpha_0(v) v, \alpha_1(v) v \mid v \in \mathbb{Z}_{n/2} \rangle$, and
- $S_o + 2H = S_o$.

Proof.

$$\hat{\alpha}_i(v) = v$$
 for odd v .

$$\hat{\alpha}_i(2v) = 2\alpha_i(v).$$

ACT Waterloo Sept 2022 12 /

Defn (Marušič et al. 1989). *X* is *unstable* if $Aut(X \times K_2) \neq Aut X \times Aut K_2$.

Open problem (Steve Wilson 2008)

Which circulant graphs are unstable?

Assume connected, twin-free, nonbipartite. "nontrivially unstable"

We generalized Wilson's families of examples (C.1 - C.4) and added another infinite family.

According to a computer search, these families include all of the nontrivially unstable circulant graphs with no more than 50 vertices.

But there may be ∞ more examples yet to be found.

We still do not understand $Aut(X \times Y)$, even if X is circulant and $Y = K_2$.

Down Marrier (Harffachleridae)

Background on $Aut(X \times K_2)$ (when X is a circulant graph)

D. Marušič, R. Scapellato, and N. Zagaglia Salvi:

A characterization of particular symmetric (0,1) matrices.

Linear Algebra Appl. 119 (1989), 153-162.

MR 1005241, doi:10.1016/0024-3795(89)90075-X

S. Wilson:

Unexpected symmetries in unstable graphs.

J. Combin. Theory Ser. B 98 (2008), no. 2, 359–383.

MR 2389604, doi:10.1016/j.jctb.2007.08.001

Y.-L. Qin, B. Xia, and S. Zhou:

Stability of circulant graphs,

J. Combin. Theory Ser. B 136 (2019) 154-169.

MR 3926283, doi:10.1016/j.jctb.2018.10.004

References

Products of graphs

R. Hammack, W. Imrich, and S. Klavžar:

Handbook of Product Graphs, 2nd ed.

CRC Press, Boca Raton, FL, 2011.

MR 2817074, https://www.routledge.com/9781138199088

Wikipedia: Bipartite double cover.

https://en.wikipedia.org/wiki/Bipartite_double_cover

Dave Morris (H of Lethbridge)

Recent results on $Aut(X \times K_2)$ when X is a circulant graph

B. Fernandez and A. Hujdurović:

Canonical double covers of circulants

J. Combin. Theory Ser. B 154 (2022), 49-59.

MR 4357354 doi:10.1016/j.jctb.2021.12.005

D. W. Morris:

On automorphisms of direct products of Cayley graphs on abelian groups, *Electronic. J. Combin.* 28 (2021) P3.5.

doi:10.37236/9940

A. Hujdurović, Đ. Mitrović and D. W. Morris:

On automorphisms of the double cover of a circulant graph, *Electronic J. Combin.* 28 (2021) P4.43 doi:10.37236/10655

A. Hujdurović, Đ. Mitrović and D. W. Morris:

Automorphisms of the double cover of a circulant graph of valency at most 7 (preprint). https://arxiv.org/abs/2108.05164