Automorphisms of direct products of some circulant graphs

Dave Morris University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave Morris@uleth.ca

Abstract. The direct product of two graphs X and Y is denoted $X \times Y$. This is a natural construction, so any isomorphism from X to X' can be combined with any isomorphism from Y to Y' to obtain an isomorphism from $X \times Y$ to $X' \times Y'$. Therefore, the automorphism group $Aut(X \times Y)$ contains a copy of $(Aut X) \times (Aut Y)$. It is not known when this inclusion is an equality, even for the special case where $Y = K_2$ is a connected graph with only 2 vertices.

Recent work of B. Fernandez and A. Hujdurović solves this problem when X is a "circulant" graph with an odd number of vertices (and $Y = K_2$). We will present a short, elementary proof of this theorem.

Graph products

Given two graphs X and Y, construct a new graph X * Y. Most important: Cartesian \square , strong \boxtimes , direct \times . (wreath \wr)

- commutative: $X * Y \cong Y * X$ (not wreath)
- associative: $(X * Y) * Z \cong X * (Y * Z)$

Definition (Cartesian product $X \square Y$)

Horizontal copies of

$$X =$$

Vertical copies of

$$Y=K_2=$$

Cartesian product $X \square Y$: horizontal copies of X, vertical copies of $Y = K_2$

rectangles, and each

rectangle has two diagonals

Definition (strong product $X \boxtimes Y$)

 $X \square Y$ + diagonals of all \square rectangles.

$$X \boxtimes Y = X \square Y + \text{diagonals of all } \square \text{ rectangles}$$

Definition (direct product $X \times Y$)

only has the diagonals

$$(x_1, y_1) \xrightarrow{X \times Y} (x_2, y_2) \Leftrightarrow x_1 \xrightarrow{X} x_2 \text{ and } y_1 \xrightarrow{Y} y_2$$

Note. $X \times K_2$ is bipartite.

Canonical bipartite double cover of X.

Exercise

Choose a graph product $(\Box, \boxtimes, \times)$ and call it *.

Show that every (finite) graph X has a prime decomposition for *:

- $\bullet X \cong X_1 * X_2 * \cdots * X_n.$
- No X_i can be written as $Y_1 * Y_2$ (with Y_1, Y_2 smaller than X_i).

Theorem (Sabidussi-Vizing 1960/1963, Dörfler-Imrich 1970)

Assume X connected. (There is a path of edges from any vertex to any other vertex.) Then the prime decomposition is unique for \square and \boxtimes .

(up to permutation of the factors and isomorphism)

Rem. Prime decomp is not unique for \Box if graphs not connected:

$$(1 + x + x^2)(1 + x^3) = (1 + x^2 + x^4)(1 + x)$$
 in $\mathbb{Z}^+[x]$ is a non-unique prime factorization.

Let $x = K_2$ (a graph). (+ is disjoint union and $x^n = x \square x \square \cdots \square x$)

 \square , \boxtimes , \times are natural graph-theoretic constructions:

$$X \stackrel{\alpha}{\cong} X', Y \stackrel{\beta}{\cong} Y' \Rightarrow X * Y \stackrel{\alpha \times \beta}{\cong} X' * Y'.$$

So $\operatorname{Aut} X \times \operatorname{Aut} Y \subseteq \operatorname{Aut}(X * Y)$.

Exercise

 $\operatorname{Aut} X \times \operatorname{Aut} Y = \operatorname{Aut}(X * Y) \Rightarrow X \text{ relatively prime to } Y \text{ for } *.$

Theorem (Sabidussi-Vizing 1960/1963)

Converse is true for \Box . (if X and Y are connected)

Also for \boxtimes , but need an additional technical condition.

Bad news

Converse is **not** true for ×:

we do not understand $\operatorname{Aut}(X \times Y)$, even if $Y = K_2 = -$.

Defn. *X* is *stable* if $Aut(X \times K_2) = Aut X \times Aut K_2$.

Exercise (an obvious cause of instability)

 $Aut(X \times K_2) \neq Aut X \times Aut K_2$ if X has "twin" vertices. even if connected

Hint: Assume neighbours of a = neighbours of b. ("twins"

Then (a, 1) and (b, 1) are twins in $X \times K_2$. (a, 1) (b, 1)

There is an automorphism that interchanges (a, 1) and (b, 1), but fixes all other vertices.

Converse is not true. (*Lots* of counterexamples that are connected.)

Theorem (Fernandez-Hujdurović, 2020⁺)

Converse is true if X is "circulant" graph with odd number of vertices.

Generalization (Morris, 2020+)

X can be a "Cayley graph" on an abelian group of odd order. (**Defn.** *Circulant graph* = Cayley graph on a cyclic group.)

edite graph of a cycle graph of a cycle g

Remark (Hujdurović-Mitrović, 2020+)

Cannot delete "abelian." (Computer found counterexample with 21 vertices.)

Thm. If X is a Cayley graph on an abelian group of odd order, then $\operatorname{Aut}(X \times K_2) = \operatorname{Aut} X \times \operatorname{Aut} K_2$. (Assume *X* is connected and twin-free.)

For any abelian group G, and $S \subseteq G \setminus \{0\}$: $\exists Cayley graph Cay(G; S)$.

Example

 $Cay(\mathbb{Z}_{12}; \{3, 4\})$

 $(\mathbb{Z}_{12} \text{ cyclic: this is a circulant graph.})$

vertices: elements of \mathbb{Z}_{12}

edges: $v - v \pm 3 \& v - v \pm 4$

Example

$$Cay(\mathbb{Z}_6 \times \mathbb{Z}_2; \{(1,0), (0,1)\}).$$

vertices: elements of $\mathbb{Z}_6 \times \mathbb{Z}_2$

edges: $v - v \pm (1,0) \& v - v \pm (0,1)$

Theorem (Morris 2020⁺)

- X = Cay(G; S) with G abelian of **odd order** (connected, twin-free)
 - \Rightarrow Aut $(X \times K_2) = \text{Aut} X \times \text{Aut} K_2$.

Lemma (will prove later)

```
X = Cay(G; S) with G abelian. Assume
```

$$\forall s_1, s_2 \in \pm S: \quad s_1 \neq s_2 \implies 2s_1 \neq 2s_2.$$

Then $\operatorname{Aut}\operatorname{Cay}(G;S)\subseteq\operatorname{Aut}\operatorname{Cay}(G;2S)$ where $2S=\{2s\mid s\in S\}.$

Proof of Theorem.
$$X \times K_2 = \text{Cay}(G \times \mathbb{Z}_2; S \times \{1\})$$
. (can take as definition) $2(s_1, 1) = 2(s_2, 1) \Rightarrow (2s_1, 0) = (2s_2, 0) \Rightarrow 2s_1 = 2s_2 \Rightarrow s_1 = s_2$.

Aut Cay(
$$G \times \mathbb{Z}_2$$
; $S \times \{1\}$)

- \subseteq Aut Cay($G \times \mathbb{Z}_2$; $2(S \times \{1\})$)
- = Aut Cay $(G \times \mathbb{Z}_2; 2S \times \{0\})$
- \subseteq Aut Cay $(G \times \mathbb{Z}_2; \mathbf{2^k} S \times \{0\})$
- = Aut Cay $(G \times \mathbb{Z}_2; S \times \{0\})$ (choose $2^k \equiv 1 \pmod{|G|}$)

So restriction to bottom layer is in Aut *X*: $\alpha(x,0) = (\varphi(x),0)$.

Since there are no twins: $\alpha(x, 1) = (\varphi(x), 1)$. (Exercise)

Lemma

X = Cay(G; S) with G abelian. Assume

 $\forall s_1, s_2 \in \pm S: \quad s_1 \neq s_2 \implies 2s_1 \neq 2s_2.$

Then Aut Cay $(G; S) \subseteq Aut Cay(G; 2S)$ where $2S = \{2s \mid s \in S\}$.

Proof. Let $\#_2(x, y) = \#$ paths of length 2 from x to y.

Edge: x - x + s (with $s \in \pm S$).

Path of length 2: $x - x + s_1 - x + s_1 + s_2$ (with $s_1, s_2 \in \pm S$).

{paths of length 2 from x to y} \leftrightarrow { $(s_1, s_2) \mid x + s_1 + s_2 = y$ }.

These come in pairs (s_1, s_2) and (s_2, s_1) unless $s_1 = s_2$: y = x + 2s.

Note: s is unique (if it exists) because $s_1 \neq s_2 \implies 2s_1 \neq 2s_2$

So $\#_2(x, y)$ is odd $\iff x \stackrel{2S}{=} y$.

Any automorphism of Cay(G; S) must preserve $\#_2$ and must therefore preserve the edges in Cav(G; 2S).

Remark

Can replace 2 with any $k \in \mathbb{Z}^+$, but proof is a bit more complicated.

Bad news

We do not understand $Aut(X \times Y)$, even if $Y = K_2 = \bullet \bullet \bullet$.

Good news

The problem only arises for graphs that are bipartite.

Theorem (Dörfler 1974)

 $Aut(X \times Y) = Aut X \times Aut Y \text{ if } X \text{ and } Y \text{ are connected, twin-free,}$ and **not** bipartite and X is \times -coprime to Y.

Exercise

Assume X and Y are bipartite (and have more than one vertex).

- \bigcirc Show $X \times Y$ is not connected.
- 2 Show $Aut(X \times Y) \neq Aut X \times Aut Y$ if Aut X and Aut Y are nontrivial.

- both X and Y not bipartite: good
- **both** *X* and *Y* bipartite: **bad**

Open case: X is not bipartite and Y is bipartite.

The simplest nontrivial bipartite graph is K_2 .

That is one reason why it is important to study $Aut(X \times K_2)$.

(Another reason: $X \times K_2$ is the canonical double cover.)

But it is not just a special case — it is the main case:

Proposition (classical?)

Assume $Aut(X \times K_2) = Aut X \times Aut K_2$. (and X is not bipartite)

Then $\operatorname{Aut}(X \times Y) = \operatorname{Aut} X \times \operatorname{Aut} Y$

if X is coprime to Y in an appropriate sense.

Eg., If X and Y are abelian Cayley graphs, then suffices to assume gcd(|V(X)|, |V(Y)|) = 1.

References

Products of graphs

R. Hammack, W. Imrich, and S. Klavžar:

Handbook of Product Graphs, 2nd ed.

CRC Press, Boca Raton, FL, 2011.

MR 2817074, https://www.routledge.com/9781138199088

Wikipedia: Bipartite double cover.

https://en.wikipedia.org/wiki/Bipartite_double_cover

$Aut(X \times K_2)$ when X is a circulant graph

S. Wilson.

Unexpected symmetries in unstable graphs.

J. Combin. Theory Ser. B 98 (2008), no. 2, 359–383.

MR 2389604, doi:10.1016/j.jctb.2007.08.001

Y.-L. Oin, B. Xia, and S. Zhou:

Stability of circulant graphs,

J. Combin. Theory Ser. B 136 (2019) 154-169.

MR 3926283, doi:10.1016/j.jctb.2018.10.004

B. Fernandez and A. Hujdurović:

Canonical double covers of circulants

(preprint, 2020). https://arxiv.org/abs/2006.12826

D. W. Morris.

Stability of Cayley graphs on abelian groups of odd order (preprint, 2020). https://arxiv.org/abs/2010.05285