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ABSTRACT . The paper is prompted by certain apparent deficiences both in the discussion of the regression model in
instructional sources for geographers and in the actual empirical application of the model by geographical writers.
In the first part of the paper the assumptions of the two regression models, the ‘fixed X’ and the ‘random X’, are
outlined in detail, and the relative importance of each of the assumptions for the variety of purposes for which regres-
sion analysis may be employed is indicated. Where any of the critical assumptions of the model are seriously violated,
variations on the basic model must be used and these are reviewed in the second half of the paper.

THE rapid increase in the employment of mathematical models in planning has led R. J.
Colenutt to discuss ‘some of the problems and errors encountered in building linear models
for prediction’.1 Colenutt rightly points out that the mathematical framework selected for
such models ‘places severe demands on the model builder because it is associated with a
highly restrictive set of assumptions . . . and it is therefore imperative that, if simple linear
models are to be used in planning, their limitations should be clearly understood’.2

These models have also been widely used in geography, for descriptive and inferential
purposes as well as for prediction, and there is abundant evidence that, like their colleagues
in planning, many geographers, when employing these models, have not ensured that their
data satisfied the appropriate assumptions. Thus many researchers appear to have employed
linear models either without verifying a sufficient number of assumptions or else after
performing tests which are irrelevant because they relate to one or more assumptions not
required by the model. Furthermore, many writers, reporting geographical research, have
completely omitted to indicate whether any of the assumptions have been satisfied. This
last group is ambiguous, and it is clearly not possible, unless the values of the variables are
published, to judge whether the correct set of assumptions has been tested or, indeed, to
ascertain whether any such testing has been performed at all.

This problem partially arises from certain shortcomings in material which has been
published with the specific objective, at least inter alia, of instructing geographers on the
use of quantitative techniques. All of these sources make either incomplete or inaccurate
specifications of the assumptions underlying the application of linear models, although it is
encouraging to note that there has been a considerable improvement in the quality of this
literature in recent years. Thus, there were four books and two articles published in the
early and mid-1960s which may be classified as belonging to this body of literature, 3 yet,
in five of these six sources, only one of the assumptions of the model is mentioned and, even
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in the other, only two are referred to. Many of these writers, it is true, discuss regression
analysis too briefly to allow space for a comprehensive treatment of the assumptions of
the model, but it is unfortunate that none of them did the same as J. B. Cole and C. A. M.
King in 1968 who at least warned of the existence of unspecified dangers in the use of
regression analysis. 4 Except for this qualification, the work of Cole and King is similar to
the earlier volumes, for only one of the model’s assumptions is mentioned.5 However,
M. H. Yeates’s volume, published in 1968, represents a significant improvement, for three
of the assumptions are referred to.6 This improvement has since continued, for much the
most comprehensive coverage of these assumptions presented so far by a geographer has
been that of L, J. King, published in 1969: he, in fact, alludes to each one of the model’s
seven assumptions.7 Nevertheless, L. J. King’s account must be criticized for its unsystem-
atic exposition of the assumptions, for its inaccurate or ambiguous treatment of three of
them and for its failure to distinguish basic assumptions from rather less critical ones.
Further, he fails to discuss either the task of testing to discover whether the assumptions are
satisfied or the problem of finding an alternative method to overcome the difficulty en-
countered when testing reveals that an assumption is not satisfied.

There is a close parallel between this work of L. J. King, directed towards geographers,
and that of Colenutt in the field of planning. Both writers have felt it necessary to warn
their colleagues in their respective professions that the correct use of the regression model
requires that several critical assumptions be satified. This at least implies that the model
has been used carelessly in the past. In fact, King has explicitly pointed out that geographers
have tended to employ correlation and regression analysis without showing sufficient
awareness of the technical problems involved, prominent among which are the assumptions
on which such analysis is based. The similarity between Colenutt’s paper and the account
of King even extends to the fact that neither of them presents a fully adequate or accurate
account of the assumptions of the model, though it should be pointed out that the work of
King is, in this respect, superior to that of Colenutt : thus the latter totally ignores two of the
most critical assumptions, and his treatment of a third is in error.

Such inadequate treatment of the topic by planners and geographers suggests the
need for a concise review of the assumptions of linear models, especially as the elemen-
tary statistical texts, such as those of M. J. Moroney and M. R. Spiegel, 8 generally concen-
trate on outlining the computational procedures and ignore the underlying assumptions.
Moreover, even the more advanced and specialized sources are rarely comprehensive in
their treatment of these assumptions and their implications; and they tend necessarily, too,
to submerge the assumptions in the details of the theory of mathematical statistics.

Therefore, the objective of this paper is to bring together, from many of the less
elementary sources, material on two major topics relating to what is probably the most
frequently applied of the linear models, the regression equation. The two topics on which
attention is focused are :
(1) The fundamental assumptions which must be satisfied if the application of the classical
linear regression model is to be totally valid.
(2) The alternative techniques which may be employed when these assumptions are not
satisfied in any specific empirical problem; treatment of this second topic necessarily
involves the discussion of tests designed to discover the extent to which the assumptions
are satisfied, and an indication of how severe a deviation from each assumption may be
tolerated without having to resort to the alternative techniques.
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Since the aim is to present a concise review of these topics, theoretical proofs are not
presented, nor are the computational procedures outlined; however, references to more
detailed sources are provided.

THE CLASSICAL LINEAR REGRESSION MODEL

The assumptions of the model
The general single-equation linear regression model, which is the universal set containing
simple (two-variable) regression and multiple regression as complementary subsets, maybe
represented as

where Y is the dependent variable; X l, X2 . . . Xi . . . Xk are k independent variables;
a and bi are the regression coefficients, representing the parameters of the model for a
specific population; and u is a stochastic disturbance-term which may be interpreted as
resulting from the effect of unspecified independent variables and/or a totally random ele-
ment in the relationship specified.9

So far, the discussion has proceeded as if there was only one general regression model.
It is important to distinguish two distinct models, each of which is expressed in the form of
the equation above. The critical difference between these two models concerns the nature
of the independent variables, Xi; in one, the Xi are held constant experimentally at certain
fixed values while, in the other, the Xi values are selected at random,10 Therefore, since Y
is random in both models, the ‘fixed X’ model is characterized by a contrast between Xi

and Y, for the former are fixed, while the latter is random; on the other hand, in the ‘ran-
dom X’ model, either sets of Xi and Y values are selected at random from a multivariate
population, or else pairs of X and Y values are drawn at random from a bivariate population.
The implication of this last difference is that, since the concept of correction is appropriate
only for bivariate or multivariate populations, it follows that correlation analysis is valid
only in the case of the ‘random X’ model. 11

There are several research objectives for which the regression model may be used,
but they may be classified into three groups: (i) the computation of point estimates, (ii)
the derivation of interval estimates, and (iii) the testing of hypotheses. The assumptions to
be satisfied for the proper application of the model vary with the research objective: in
particular, the computation of point estimates requires a less restrictive set of assumptions
than do the others, and it is therefore proposed to commence by considering such estimates. 12

Four principal point estimates may be required. First, estimates are generally wanted
for a and for the bi in order to allow the derivation of a regression equation containing
specific numerical constants. Secondly, it may be required to predict the expected value
of Y corresponding to specific values of Xi; thirdly, a point estimate of the variance of
Y must be computed as an intermediate step in the deriving of interval estimates and in
the testing of hypotheses; and fourthly, a point estimate of the correlation coefficient, r,
may be obtained. It may be shown that the best (minimum variance) linear unbiased esti-
mates of the regression parameters are derived by applying the least-squares method of
computation to the sample data to be analysed. Moreover, the last-squares principle
allows the derivation both of the best linear unbiased predictor of the expected value of Y
for specific values of Xi and also of unbiased estimates of the variance of Y and of r.13
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However, these results are conditional upon six critical assumptions being satisfied:
(1) Each value of Xi and of Y is observed without measurement error.14

Alternatively, this first assumption maybe partially relaxed to state that only Xi must be
observed without measurement error but, in this case, the interpretation of u must be
expanded to include not only the effect of unspecified independent variables and of an
essentially random element in the relationship but also the error incurred in measuring Y. 15

The second assumption is that of linearity.
(2) The relationships between Y and each of the independent variables X i are
linear in the parameters of the specific functional form chosen. Three of the four
remaining assumptions relate to the attributes of the disturbance-term, u: the first two of
them relate specifically to the nature of the condition distribution of u (i.e., the set of
frequency distributions of u, each corresponding to specific values of Xi) and, therefore, by
implication, are both concerned with the conditional distribution of Y.16

(3) Each conditional distribution of a has a mean of zero.
(4) The variance of the conditional distribution of u is constant for all such distri-
butions; this is the homoscedasticity assumption.
(5) The values of u are serially independent; thus the values of u are independent of
each other and their convariance is accordingly zero. If the fourth assumption is not satisfied
in a specific empirical situation, heteroscedasticity is said to be present in the data, while,
if the fifth assumption is not satisfied, autocorrelation is said to be present.

It should be noted that the requisite properties of the conditional distribution of the
disturbances need hold-only for certain specific values in the ‘fixed X’ model, whereas, in
the ‘random X’ model, these properties must be satisfied for every possible value of Xi.17

All of these five assumptions are critical for both simple and multiple regression, but
the sixth of the fundamental assumptions is relevant only to the multiple regression model
since it is concerned with the relationships between the independent variables.
(6) The independent variables, Xi, are linearly independent of each other. If this
assumption is not satisfied in a specific rose, multicollinearity is said to be present.18

These six assumptions, which are all critical for point estimation in regression analysis,
must also all be satisfied if the model is to be used for the purpose either of interval estima-
tion or of hypothesis testing. However, if the regression model is to be employed for such
inferential purposes, then these six assumptions are not sufficient for the valid application
of the model, for one further assumption is needed. The precise form of this further assump-
tion differs according to whether the model being employed is of the ‘fixed X’ or ‘random
X’ type:
(7) The fixed X model requires that the conditional distribution of the disturbance-
term must be normal in form, which clearly implies that the dependent variable, Y,
has a normal conditional distribtition. The random X model requires that both the
conditional and marginal distributions of each variable are normal: this model
thus requires not only conditional normality for Y, but also for Xi, and, in addition, the
overall frequency distribution of each variable must be normal.

It may be added that, in relation to the calculation of point estimates, the assumption
of the normal conditional distribution of the disturbance-term would allow the derivation
of maximum likelihood estimates of the regression coefficients. However, these, in fact, turn
out to be identical to the least-squares estimates.19 Therefore, neither form of the normality
assumption is necessary for point estimation.20 The reason that it is necessary, on the other
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hand, for inferential problems is that the two statitics commonly used, Student’s t and
Snedecor’s F, both require that the data be normally distributed. Even in relation to
inferential problems, however, this assumption is not binding, provided that the sample is
very large. Interval estimates are most often made when computing confidence intervals for
the individual regression coefficients, a and bi, and when calculating interval estimates for
predicted values of Y corresponding to specific values of Xi: in both these cases Student’s t
is used. Sometimes, however, the aim is to establish confidence regions for both or all
regression coefficients simultaneously and, in this case, Snedecor’s  F is used. The most
frequently performed tests relate to hypotheses on the value of individual regression coeffi-
cients and on the values of the entire set of such coefficients: when the hypothesized values
are zero, this second test is equivalent to testing the significance of the regression model as
a whole. For the first of these tests, either the t or F statistics may be used, but the second
test requires Snedecor’s F.21

In the case of the random X model, inferential analysis may also be carried out upon
the correlation coefficient. Such inference includes the establishment of confidence intervals
about r by means either of David’s tables, based on the density function of r, or of Fisher’s
z transformation and the distribution of Student’s t. It also includes both the test of the
hypothesis that r equals zero, using Student’s t, and also the test of the hypothesis that r
equals some specific value other than zero, for which either David’s tables or else Student’s
t with Fisher’s z transformation may be employed. Such tests and estimation procedures
are applicable not only to simple and multiple correlation coefficients but also to partial
correlation coefficients.22

The geographical literature on the assumptions of the regression model
It is claimed that the rustication for this paper is the inadequate attention given to the
assumptions of the regression model in the geographical literature. Excempt for a passing
mention given to those books written by geographers which purport to provide instruction
on the use of regression analysis, no evidence has yet been presented to demonstrate the
inadequacy of the attention given to the assumptions of the model, Therefore, now that
each assumption has been described, it is proposed to examine briefly the extent to which
each one has been alluded to by geographers when reporting specific applications of regres-
sion analysis. In the course of this examination, the comments made in the introduction
about the treatment of the assumptions in the literature purporting to give instruction to
geographers and planners on the use of the regression model will also be elaborated.

It is rare to find explicit reference to the assumption that there are no measurement
errors in the data, though it might be argued that the need for accurate data is so obvious
that it is taken for granted: A. H. Robinson and R. A. Bryson are among the few geographers
who have referred explicitly to the problem.23 Clearly, it is difficult to test for measurement
error, even though A. R. Hill has conducted an experiment to isolate operator variability
in pebble-orientation analysis.24 However, there appears to be little awareness in the
geographical literature of the fact that the presence of measurement error in the indepen-
dent variables is a much more serious problem than its presence in the dependent variable.
The exception to this statement is found in the book by L. J. King, for he does refer quite
correctly to this measurement error assumption.25

The linearity assumption is the only one which is mentioned by every single geographer
giving instruction on the use of the regression model.26It is therefore no surprise that many
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geographers, when using regression analysis, have been conscious of the need for the
relationships investigated to be linear if the linear model is to be fitted: H. G. Kariel, and
also J. F. Hart and N. E. Salisbury, are examples of geographers who have actually tested
for the presence of linearity.27

The assumption relating to the nature of the disturbance-term has been given much
less attention in the geographical literature than has the linearity assumption. The assump-
tion that each conditional distribution has a mean of zero appears to have been almost totally
ignored, and the homoscedasticity assumption has not been given much more attention.
B. J. L. Berry and H. G. Barnum have performed a logarithmic transformation in order to
ensure greater homoscedasticity,28 but there are few other explicit references in the geogra-
phical literature to testing for homoscedasticity, and it seems reasonable to conclude that
most geographers have not verified this assumption of the model.

The third of the assumptions relating to the disturbance-term is that there should be
no autocorrelation. Almost all the discussion of this problem in the literature of econo-
metrics and statistics has dealt with the presence of autocorrelation in time-series data.
Clearly, however, since geographical analysis is more concerned with spatial variation than
with temporal variation, much of the data subjected to regression analysis by geographers
refer to cross-sections through time, so the problem of time-series autocorrelation does not
arise. But the correlation between values corresponding to successive time-periods, which
is such a common feature of time-series data, has its parallel in the analysis of spatial
variation at a cross-section through time, for there is frequently correlation. between the
values of the disturbance-term corresponding to contiguous spatial units. This problem of
spatial autocorrelation is even more complex than the temporal autocorrelation problem,
because there is more than one dimension involved in the spatial case. For a long time the
only contribution on the spatial autocorrelation problem was that of the statistician R. C.
Geary, 29 but some geographers have recently become aware of the problem: L. Curry has
alluded to it, and M. F. Dacey has derived methods to test for the presence of spatial
autocorrelation in data measured on a nominal scale.30 However, it still appears to be rare
for geographers using regression analysis to test for spatial autocorrelation.

Of all the geographers who have provided instruction on the use of regression analysis
in their books, L. J. King is the only one who has mentioned any of these three assumptions
relating to the characteristics of the disturbance-term.31 He refers to each of the three
although, in stating the assumptions that the disturbances have a mean of zero, he fails
to state that this relates only to the conditional distribution. This is in contrast to his
treatment of the homoscedasticity assumption, which follows immediately after his reference
to the zero mean assumption, for he does make it clear that homoscedasticity implies equal
variance for all conditional distributions.

The last of the six basic assumptions of the regression model, the absence of multi-
collinearity, has been recognized by many geographers; and E. N. Thomas, R. A. Mitchell
and D. A. Blome and Shue Tuck Wong are examples of writers who have examined their
correction matrix for the presence of multicollinearity.32 Moreover, of the instructional
sources, two of them, the books by Yeates and L. J. King, mention this assumption.33

Multicollinearity, in fact, is probably second only to linearity among the six basic assump-
tions in the frequency with which it is alluded to by geographers using regression analysis.
The remaining four of these six assumptions have been referred to much less frequently.

The most curious feature, however, of the geographical literature on the assumptions
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of the regression model is that neither the presence of linearity, nor the absence of multi-
collinearity, nor any of the other basic assumptions of the regression model has been
alluded to as frequently by geographers as has the property of normality. It is the presence
of normality which has been most often stated by geographers to be a critical assumption of
the model and it is normality whose presence has been most often tested for. Yet, as we
have seen, this property is relevant only for interval estimation and hypothesis testing:
it is not one of the six basic assumptions necessary for the initial point estimation. 34

Even more important, geographers, when testing distributions prior to using regres-
sion analysis, appear almost invariably to have examined the marginal distribution and to
have ignored the conditional distribution. True, this has seldom been made absolutely
explicit, for the term ‘marginal distribution’ never seems to have been employed. However,
when geographers} reporting the use of regression analysis, write of testing ‘the distribution
of the individual variables’35 or of ‘normalizing the data by means of log transformation’,36

it seems likely that they are referring implicitly to the marginal distribution of the variables
concerned. Yet, at least in the case of the fixed X model, the form of the marginal distribu-
tion is totally irrelevant. Clearly, in most instances in geographical research, it is, in fact,
the random X model which is the appropriate one to employ, and this, of course, does
require that the marginal distribution be normal. However, a normal marginal distribution
is not alone sufficient, for it is essential that the conditional distribution also be normal.

Those sources purporting to provide instruction on the use of regression analysis are
no better, for McCarty and Lindberg and also Yeates fail to state, or even imply, that the
conditional distribution should be normal, and L. J. King, in referring to the normality-
assumption, does riot make it clear whether he is referring to the marginal or the conditional
distribution of the disturbance-term.37 Moreover, none of these sources points out that the
normality assumption is relevant only for interval estimation and hypothesis testing: true,
King does state that the assumptions of the regression model are of varying importance,
depending on whether or not the work has an inferential purpose, but he fails to state which
specific assumptions this statement refers to.38

Before concluding this discussion of the extent to which geographers have shown an
awareness of the assumptions of the regression model, detailed mention should be made of
the paper written on this model by Colenutt for, although directed primarily towards
planners, it is published in a source familiar to many geographers. Of the six basic assump-
tions of the model, four are alluded to by Colenutt, but he omits to state that the conditional
distributions of the disturbance-term should each have a mean of zero and a constant
variance. Moreover, in relation to the normality assumption, he makes the same error that
so many geographers commit by omitting to say that the conditions} distribution of the
variables should be normal.39

Thus, although L. J. King and Colenutt have provided much better instruction or-i
the assumptions necessary for the valid use of regression analysis than have previous
writers in the disciplines of geography and planning, there are deficiencies even in their
accounts. Since the geographical and planning sources on the use of the model thus exhibit
inadequacies and since the record of application of the model in these disciplines has been
rather unsatisfactory, there appears to be some need for a paper whose objectives are to
state clearly to geographers the assumptions of the regression model, to indicate how these
assumptions may be tested for and to describe alternative models which may be used when
certain assumptions are not satisfied.
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ALTERNATIVES TO THE CLASSICAL LINEAR REGRESSION MODEL
Since the application of classical linear regression analysis, to be totally valid, requires that
so many assumptions are satisfied, it follows that the testing of these assumptions is a
critical part of any such analysis. Yet the geographical literature on regression analysis
contains few detailed references to such testing: thus the only instructional sources in-
cluding such references are the volumes by L. J. King and by Cole and C. A. M. King.
Both of them contain descriptions of testing for normality, though not in relation to regres-
sion analysis specifically,40 and L. J. King also describes the tests for autocorrelation
devised by Geary and Dacey.41 Reports on specific empirical applications of regression
analysis by geographers often simply state that some assumption has been tested for,
without indicating the method used. It is clear, however, from those reports which do
specify the actual test used, that geographers have made little use of statistical inference
procedures when performing such tests: in fact, most of the assumption-testing which has
been done has consisted of the visual inspection of graphs, such as the fractile diagrams used
by P. D. La Valle to test for normality and the scattergrams employed by Kariel to test for
linearity. 42

If testing reveals that a particular assumption of the classical regression model is not
satisfied, then some alternative to the straightforward application of this classical model
must be resorted to. Those alternative methods, which still basically involve regression
analysis, are of two main types: either the input data maybe tranformed, most frequently by
applying a logarithmic, reciprocal, power or arcsin transformation,43 or else a variation on
the classical regression model may be applied. Geographers have frequently used the
first of these methods, ‘transformation, though almost entirely in order to satisfy the nor-
mality and linearity assumptions. Thus almost all the instructional sources refer to the
possibility of transforming the data to achieve linearity and D. S. Knos is an example of a
geographer who has done this when working on a specific empirical problem.44 Far fewer
of the instructional sources allude to transformation as a way to achieve normality, but
many geographers, such as G. Olsson and A. Persson and La Valle, have, in fact, done this
in empirical work.45 Berry and Barnum, in contrast, are two of the few geographers who
have transformed data in order to ensure greater homoscedasticity.46 The second of the
alternative ways of satisfying the assumptions of the model, by using a variant on classical
regression analysis, appears to have been almost totally ignored by geographers; among the
few references of this type are the allusions by P. Haggett and R. J. Chorley to the use of
polynomials when the linearity assumption cannot be satisfied, even by transformation.47

In this paper, on the other hand, a brief outine will be given of both types of method and
of the circumstances in which they maybe used. The topic will be approached by discussing
each of the seven assumptions in turn,

Assumptions on measurement error and linearity
The incurring of measurement error in the observation of the independent variables, Xi,
would lead to biased estimates of the regression coefficients if the classical regression model
were used.48 However, any test of the degree of measurement error is clearly made difficult
by the fact that the amount of error is unknown. In fact, for most purposes, it is frequently
assumed, at least in econometrics, that measurement error is much less significant than
errors resulting from incorrect equation specification, so the former is generally ignored. 49

.
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The problem of measurement error can also be ignored if the sole objective of the regression
analysis is to predict the value of Y corresponding to a given set of Xi values.50

Prediction however, is rarely the sole reason for performing regression analysis, and it
sometimes happens that serious measurement error is suspected in the data, so that some
other method than classical least-squares must be adopted. Since the mathematics of some
of these methods are complex, most writers discuss them in relation only to simple regres-
sions51 and this convention will be followed here. There is quite an easy method which is
applicable when measurement error occurs in the independent variable, X, in simple
regression, but Y is observed without error. The solution in this case is to reverse the roles
of X and Y by using the former as the dependent variable and the latter as the independent
variable: having made this adjustment, ordinary least-squares estimation is then valid,
provided, of course, that the other assumptions of the model are satisfied.52

It is when serious measurement error occurs in the variables on both sides of the
equation that more elaborate methods are required. The first such method is to assume that
the measurement errors are serially independent and normally distributed and to use
estimates of the error variances as weights in a modified application of the least-squares
model.53 The second method is to rank and group the data and, assuming that the errors
are serially independent but not necessarily normally distributed, to derive the regression
coefficients by manipulating the subgroup means for the respective variables.54 The third
and final method involves the use of instrumental variables, which are independent of the
errors and highly correlated with the true values of the variables, and the manipulation of
the deviations of individual values from mean values for both the original variables and the
instrumental variables.55

Turning from measurement error to equation specification error, it is now necessary to
consider tests relating to the linearity assumption of the regression model and to indicate
the procedures available when this assumption is significantly violated. Testing for the
linearity of a relationship may take one of three forms. Either, having fitted a high-order
polynomial function, the regression coefficients for the terms of second or higher order may
be tested for significant departures from zero; or, after stratifying the data on the basis of
the X values, a regression equation may be calculated for each stratum and the significance
of the differences between each of the slope coefficients maybe tested; or else the sequence
of residuals, arranged in order of increasing X, maybe tested for randomness.56

If the application of any of these tests suggests that the linearity assumption is not
satisfied in a specific instance, the input data are generally transformed to yield new data
which satisfy this assumption more closely: ordinary linear regression can then be applied
to these transformed data.57 Alternatively, either the attempt maybe made to fit a higher-
order polynomial function to the original data which appear to be linked in a curvilinear
relationship, 58 or else one of several iterative methods of estimating the parameters of
other non-linear functions may be used.59

Assumptions on the pattern of disturbances

It is impossible to test directly, in any specific empirical example, the validity of the four
assumptions relating to characteristics of the disturbances, for these characteristics are
unknown because the disturbances are unobservable. However, tests may be carried out on
the pattern of the residuals, using this as an estimate of the pattern of disturbances.60
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The first of these assumptions relating to the nature of the disturbance is that the
mean disturbance is zero for each value of Xi. In practice, the principal point is that the
residual mean, e, should be independent of Xi. However, the bias introduced into the model
when this assumption is not satisfied is small, provided that the residual variance is small.61

Testing thus involves measuring both the correlation between e and Xi and also the variance
of e. If such testing reveals however, that the assumption is so poorly satisfied that a
considerable bias is introduced into the estimation of the regression coefficients, then the
form of the specification of the relationship between Xi and Y should be changed and an
alternative equation used.

The homoscedasticity assumption states that the conditional disturbance distribution
should have a variance which is constant for all Xi values but, again, the major requirement
in practice is that the residual variance should be independent of Xi. In fact, if the variance
of e is not constant, but is independent of Xi, the estimates of the regression coefficients are
still unbiased, though the usual methods of statistical inference are invalid. However, if the
variance of e is not only subject to variation, but is correlated with Xi, then the estimates of
the regression coefficients are seriously biased, and valid inference is also impossible.62

No precise test of homoscedasticity is possible, because the tests available, such as
those of Hartley or Bartlett, are highly sensitive to non-normality in the data.63 However,
if there does appear to be a correlation between Xi and the variance of e, then either the
input data maybe transformed in order to try to reduce or eliminate the heteroscedasticity,64 

or else a modified form of the regression model, weighted regression, may be used. In
this modified regression model, weights, which are proportional to the variance of e,
are applied to the variables; a frequent special case, used when the variance of e is propor-
tional to Xi, arises when the ratio Y/Xi is used as the dependent variable instead of Y
itself and the reciprocal of Xi is the independent variable.65

The third assumption states that the errors are serially independent. It maybe shown
that, although the presence of autocorrelated disturbances does not prevent the derivation
of an unbiased estimate of the regression coefficients, it does lead to two serious conse-
quences, especially if the autocorrelation coefficient is high: first, the estimates of the regres-
sion coefficients have an unduly large and inaccurately estimated variance, and, secondly,
the procedures for statistical inference are inapplicable.66

The presence of autocorrelation in one-dimensional data, such as the values corres-
ponding to a time series or to a cross-section through space, may be tested for by means of
the Durbin-Watson d statistic: specifically, this tests for the existence of dependence be-
tween successive residuals, arrayed in order of temporal or spatial sequence and derived by
the application of ordinary least-squares methods.67 Testing for the presence of auto-
correlation in the case of two-dimensional spatial data is more difficult, but a variant on the
Durbin-Watson d statistic, called the contiguity ratio, was developed by Geary: essentially
the use of this ratio tests for the similarity of the residuals corresponding to contiguous
spatial units.68 Dacey, on the other hand, in a suggested alternative way of testing for
autocorrelation in two-dimensional data, proposes an extension of the conventional one-
dimensional runs test: his method is to reduce the residual-term to a binary variable by
distinguishing only between positive and negative residuals and then to test whether there
is a significant tendency for contiguous areas to have residuals of the same sign. 69

If testing reveals that a set of data is autocorrelated, then two types of solution are
available. First, since the autocorrelation probably results either from an error in the linearity
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specification or from measurement error or from the effect of a variable excluded from the
model, the attempt may be made to eliminate it by transforming the data or by introducing
further independent variables into the model and then using ordinary least-squares
methods. 70 Secondly, one of the several more complex methods available for the com-
putation of the regression coefficients maybe used, though their application is generally
made difficult by the fact that an estimation of, or assumptions about, the form of the
autocorrelation function must be made.71

The last of the assumptions relating to the conditional disturbance distribution is that
these distributions should be normal, but, even when the intention is to perform significance
tests and establish confidence intervals, this assumption may frequently be relaxed. This is
because such statistical inference procedures are not particularly sensitive to departures
from normality: if the disturbances are non-normally distributed, the tests and intervals are
still approximately correct and, indeed, if the sample is large, the approximations are
extremely good.72 On the other hand, if the sample is small, it is very difficult to test for
normality.

If the assumption of normality does appear to be seriously violated, the data may be
transformed to derive more normal condition disturbance distributions. However, the
robustness of regression analysis with respect to the assumption of normality and the fact
that there is a greater need to satisfy such other assumptions as homoscedasticity and
linearity, together have the result that transformations specifically for the purpose of
imposing normality are infrequent.73

The assumption of the absence of multicollinearity
The last of the assumptions of the classical linear regression model is that the independent
variables, Xi, are linearly independent of each other. If this assumption is not satisfied and
the independent variables are thus multicollinear, the result is that the individual regres-
sion Coefficients for each variable are not identifiable: in fact, the closer the linear correla-
tion between the independent variables, the less the certainty with which these coefficients
may be identified. This imprecision in the estimate of the regression coefficients is generally
revealed by the occurrence of high standard errors. However, if the data contain measure-
ment error, it can happen that standard errors are low despite the presence of multicol-
linearity, and, in this case, confluence analysis (bunch-map analysis) may be necessary to
reveal the existence of the multicollinearity.74

Because multicollinearity makes the regression coefficients quite unidentifiable, it is
important, if the aim is to estimate the regression equation, to reduce it as much as possible.
Either further data may be sought,75 or certain variables maybe omitted from the model. If
the latter solution is adopted, however, care must be taken in interpreting the resulting
equation, for it cannot be assumed that an omitted variable has no effect: it is simply that
its separate effect could not be isolated.76 It maybe added, however, that, if the purpose of
the regression analysis is only to predict the value of Y corresponding to a set of Xi values,
then multicollinearity is not a serious problem, provided that the intercorrelations continue
unchanged into the future.77

CONCLUSION
This paper has attempted to summarize the major properties and assumptions of the linear
regression model, and has reviewed and commented upon the shortcomings revealed by
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some geographers in employing this model. In the case of each of the seven assumptions of
the least-squares regression model, methods have been developed to overcome the problems
presented when these assumptions are not satisfied in specific empirical situations. How-
ever, when alternative models are proposed as the solution, the model developed to over-
come any one problem often cannot simultaneously handle other problems too, because it
is highly dependent upon the other assumptions being satisfied:78 thus one of the methods
for overcoming the problem of measurement error depends upon the assumption that these
errors are not autocorrelated and have a normal conditional distribution with zero mean and
constant variance.79 On the other hand, in the case of data transformations, it frequently
happens in practice that a transformation which is designed to overcome the problems
arising when one of the assumptions is not satisfied, simultaneously solves problems
relating to other assumptions.80

In addition to indicating methods of overcoming these problems when the assump-
tions of the simple model are not satisfied it has also been shown that the assumptions vary
considerably in their significance. They vary both according to the purpose for which the
model is to be used, especially in relation to whether or not any significance testing or
derivation of confidence limits is to be done, and according to whether the purpose of the
analysis is explanation or prediction: in the case of the latter, it is not essential to satisfy the
assumptions of measurement error or multicollinearity. The assumptions also vary in the
degree to which they are robust for any particular purpose. In general, however, it may be
concluded that the normality, measurement error and zero disturbance-mean assumptions
may be given less attention than is necessary in the case of the other four assumptions: it
is of paramount importance that the relationships between variables be linear, that the
disturbances be homoscedastic and serially independent and, if multiple regression is being
performed, that the independent variables are not linearly correlated.






