Department of Chemistry and Biochemistry University of Lethbridge Biochemistry 3300



# III. Metabolism- Glycolysis

**Biochemistry 3300** 



### **Major Pathways of Glucose Utilization**



These three pathways are the most significant in terms of the amount of glucose that flows through them in most cells.

### The Two Phases of Glycolysis

Breakdown of the glucose (6C) into two molecules of the pyruvate (3C) occurs in ten steps.

Ten steps of Glycolysis can be subdivided in two Phases:

- I. The Preparatory Phase (steps 1-5)
  - spend ATP
  - glucose  $\rightarrow$  2 glyceraldehyde-3-phosphate
- II. The Payoff Phase (steps 6-10)
  - generate ATP & NADH
  - 2 glyceraldehyde-3-phosphate  $\rightarrow$  2 pyruvate









### **Preparatory Phase of Glycolysis**



Enzymes

- 2 Kinases
- 2 Isomerases

- 1 Aldolase



### **Payoff Phases of Glycolysis**



Enzymes

- 2 Kinases
- 1 Mutase
- 1 Dehydrogenase
- 1 Enolase



### Yield (in energy equivalents) per glucose

Chemical equation for glycolysis:

Glucose + 2NAD<sup>+</sup> + 2ADP + 2P

 $\rightarrow$  2 pyruvate + 2NADH + 2H<sup>+</sup> + 2ATP + 2H<sub>2</sub>O

Formation of 2x pyruvate, NADH and H<sup>+</sup> (energy released):

**Glucose + 2NAD**<sup>+</sup>  $\rightarrow$  2 pyruvate + 2NADH + 2H<sup>+</sup>  $\Delta G'_{1}^{\circ}$  = -146 kJ/mol

Formation of 2 ATP (energy cost):

 $\mathbf{2ADP} + \mathbf{2P}_{i} \rightarrow \mathbf{2ATP} + \mathbf{2H}_{o}\mathbf{O}$ 

 $\Delta G'_{2}^{\circ}$ = 61.0 kJ/mol

$$\Delta G'_{s}^{o} = \Delta G'_{1}^{o} + \Delta G'_{2}^{o} = -85 \text{ kJ/mol}$$

### **A Historical Perspective**



- 1854-1864: <u>L. Pasteur</u> establishes fermentation is caused by microorganisms.
- 1897: <u>E. Buchner</u> demonstrates cell-free yeast extracts carry out this process.
- 1905-1910: <u>Arthur Harden and William Young</u> discovered:
  - Inorganic phosphate is required for fermentation and is incorporated into fructose-1-6-bisphosphate
  - A cell-free yeast extract has a nondialyzable heat-labile fraction (zymase) and a dialyzable heat-stable fraction (cozymase).







 By 1940: Elucidation of complete glycolytic pathway (<u>Gustav Embden, Otto</u> <u>Meyerhof, and Jacob Parnas</u>).

Otto Fritz Meyerhof & Archibald Vivian Hill The Nobel Prize in Physiology or Medicine 1922



#### **Biochemistry 3300**



**Biochemistry 3300** 

University of



### **Hexokinase: First ATP Utilization**

Reaction 1 : Transfer of a phosphoryl group from ATP to glucose to form glucose 6-phosphate (G6P)



**Biochemistry 3300** 

Slide 9

### **Hexokinase: First ATP Utilization**

The two domains (grey/green) swing together when bound to Pi

- excludes H<sub>2</sub>O from active site (eg. electrostatic catalysis)







### **Phosphohexose Isomerase**

Reaction 2: Phosphohexose isomerase catalyzes the conversion of G6P to F6P (ie. aldose to ketose isomerisation)



### **Phosphohexose Isomerase**





**Biochemistry 3300** 



### **PFK-1: Second ATP Utilization**

Reaction 3: Phosophofructokinase-1 (PFK-1) phosphorylates fructose-6-phosphate (F6P)

PFK-1 plays a central role in **control** of glycolysis as it catalyzes one of the pathway's rate-determining reactions.



Irreversible under cellular conditions due to large, negative  $\Delta G'$ 

∆G'° = -14.2 kJ/mol

**Biochemistry 3300** 

### Aldolase

#### Reaction 4:

Aldolase catalyzes cleavage of fructose-1,6-bisphosphate (FBP)

### How is the large, unfavourable $\Delta G^{\circ}$ for this reaction overcome?

The [Product]/[Substrate] is kept very small

Enzymes operating far from their equilibrium state are regulatory targets

 $\Delta G'^{\circ} = 23.8 \text{ kJ/mol}$ 



(FBP)

Glyceraldehyde-3-phosphate (GAP)

CH2OPO32-

Dihydroxyacetone phosphate (DHAP)

CH<sub>2</sub>OPO<sub>3</sub><sup>2-</sup>



### **Retro Aldol Reaction**

The aldolase mechanism is similar to the retro-aldol mechansim in organic chemistry



How could (and does) aldolase enhance the rate of this reaction?

Stabilize the carbanion !

**Biochemistry 3300** 

University of Lethbridge

(Class I) Aldolase Reaction Mechanism

Formation of a protonated Schiff's base (Lys 229) that stabilizes the carbanion/enamine



Class I Aldolase (Schiff's base mechanism) Class II Aldolase (Metalloenzyme)

#### **Biochemistry 3300**

University of



### **Triose Phosphate Isomerase**

**Reaction 5:** Interconversion of the triose phosphates





### **Triose Phosphate Isomerase**

Ribbon diagram of **TPI** (**TIM**) in complex with its transition state analog 2-phosphoglycolate.

Flexible loop (light blue) makes a hydrogen bond with the phosphate group of the substrate.

Removal of loop (mutagenesis) does not impair substrate binding but reduces catalytic rate by 10<sup>5</sup> fold.

stereoelectronic control (electrostatic catalysis)



### Summary of Reaction 4 & 5



University of Lethbridge



**Biochemistry 3300** 

Slide 20



0

### Glyceraldehyde-3-Phosphate Dehydrogenase



Reaction 6: Glyceraldehyde-3-phosphate dehydrogenase forms the first "high-energy" intermediate.

#### Substrate Level Phosphorylation P<sub>i</sub> is the substrate !!

High energy phosphodiester and NADH produced without expending ATP !!!

 $\Delta G'^{\circ} = 6.3 \text{ kJ/mol}$ 

 $\begin{array}{c} O \underset{1}{\overset{1}{\searrow}} \stackrel{H}{\underset{1}{\swarrow}} \\ H \underset{2}{\overset{2}{\longrightarrow}} \stackrel{H}{\underset{1}{\longleftarrow}} OH + NAD^{+} + P_{i} \\ CH_{2}OPO_{3}^{2-} \end{array}$ Glyceraldehyde 3-phosphate (GAP) glyceraldehyde 3-phosphate dehydrogenase (GAPDH)  $\begin{array}{c} O & OPO_3^{2-} \\ H - C & OPO_3^{2-} \\ H - C & OH \\ C & H_2OPO_3^{2-} \end{array} + NADH + H^+$ 1,3-Bisphoglycerate

(1,3-BPG)

**Biochemistry 3300** 





**Biochemistry 3300** 

University of

## Glyceraldehyde 3-Phosphate Dehydrogenase (covalent intermediate)







University of



Thioester is cleaved by Pi producing a high energy compound: 1,3-bisphosphoglycerate



**Biochemistry 3300** 

### Glyceraldehyde-3-Phosphate Dehydrogenase

#### **Mechanistic Studies:**



**Biochemistry 3300** 

University of Lethbridge

### Phosphoglycerate Kinase: First ATP Generation



Upon substrate binding, the two domains of PGK swing together, providing a waterfree environment (just like hexokinase)

#### **Glycolysis:**

Two kinase enzymes (hexokinase and PGK) are homologs with different substrate specificities



### Phosphoglycerate Kinase: First ATP Generation





1,3-Bisphosphoglycerate (1,3-BPG)



3-Phosphoglycerate (3PG) 1,3-bisphosphoglycerate is a higher energy compound than ATP so the reaction has a large favourable free energy change

$$\Delta G^{\circ}$$
 = -18.5 kJ/mol



### **Mechanism of PGK reaction**



Phosphotransferase reaction similar to hexokinase (and PFK)

Energetics of the Glyceraldehyde-3-Phosphate Dehydrogenase:Phosphoglycerate Kinase Reaction Pair



 $GAP + P_i + NAD^+ \longrightarrow 1,3-BPG + NADH$  $\Delta G^{\circ'} = +6.7 \text{ kJ} \cdot \text{mol}^{-1}$ 

1,3-BPG + ADP  $\longrightarrow$  3PG + ATP  $\Delta G^{\circ \prime} = -18.8 \text{ kJ} \cdot \text{mol}^{-1}$ 

 $GAP + P_i + NAD^+ + ADP \longrightarrow 3PG + NADH + ATP$  $\Delta G^{\circ'} = -12.1 \text{ kJ} \cdot \text{mol}^{-1}$ 

Coupling the two steps of the pathway:

Under standard condition: 1,3-BPG phosphotransfer drives the coupled reaction forming NADH and ATP.



### **Phosphoglycerate Mutase**

Reaction 8:Catalyzes a reversible shift of the phosphoryl group<br/>between C-2 and C-3 of glycerate;<br/>Mg<sup>2+</sup> and 2,3-bisphosphoglycerate are essential.



### **Reaction Mechanism of PGM**



Catalytic amounts of 2,3-bisphosphoglycerate are required for enzymatic activity.



2,3-Bisphosphoglycerate (2,3-BPG) 2,3-bisphosphoglycerate <u>'activates'</u> PGM by phosphorylating active site histidine

ie. Enzyme is inactive until phosphorylated



### **Reaction Mechanism of PGM**



Step 1:

Phosphohistidine transfers phosphoryl to 3PG forming 2,3-BPG

Step 2:

2,3-BPG transfers phosphoryl (3C) to His forming 2BPG and phosphorylated His

### **Gycolysis Influences Oxygen Transport**



2,3-BPG binds to deoxyhemoglobin and alters (decreases) oxygen binding affinity.

**Erythrocytes** synthesize and degrade 2,3-BPG using a 'detour' within the glycolytic pathway.







### **Gycolysis Influences Oxygen Transport**

TUT

Lower [2,3-BPG] in erythrocytes resulting from hexokinase-deficiency results in increased hemoglobin oxygen affinity.

Higher [2,3-BPG] in erythrocytes resulting from PK-deficiency results in decreased hemoglobin oxygen affinity.



Slide 37



2-Phosphoglycerate (2PG) Phosphoenolpyruvate (PEP)

$$\Delta G^{\circ} = 7.5 \text{ kJ/mol}$$

University of



F<sup>-</sup> binds to strongly metals

Overall reaction is a dehydration



### **Enolase Reaction Mechanism**

Structure of enolase catalytic center (PDB ID 10NE)



### Pyruvate Kinase : Second ATP Generation





Phosphoenolpyruvate (PEP)

> pyruvate kinase (PK)

$$\overset{O}{\approx}_{C} \overset{O}{\xrightarrow{}}^{O}$$

Pyruvate

Not a homolog of other kinases in glycolysis

Irreversible under cellular conditions due to large, negative  $\Delta G'$ 

**Biochemistry 3300** 

Slide 41



Pyruvate

University of



### **The Payoff Phase**



Biochemistry 3300

#### Slide 43



### **Summary of Enzyme Properties**

| Enzyme                     | EC Class       | Mechanism                                | Intermediate | ΔG'° | ∆G' | Features                                             |
|----------------------------|----------------|------------------------------------------|--------------|------|-----|------------------------------------------------------|
| Hexokinase                 | Transferase    | Phosphotransferase<br>ATP → ADP          | -            | -17  | -27 | Costs ATP                                            |
| G6P Isomerase              | Isomerase      | Aldose $\rightarrow$ Ketose              | enol         | 2    | -1  |                                                      |
| Phosphofructokinase        | Transferase    | Phosphotransferase<br>ATP → ADP          | -            | -14  | -26 | Costs ADP                                            |
| Aldolase                   | Lyase          | Schiffs base                             | eneamine     | 23   | -6  | $6C \text{ sugar} \rightarrow 2x \ 3C \text{ sugar}$ |
| Triose Phosphate Isomerase | Isomerase      | Ketose $\rightarrow$ Aldose              | enol         | 8    | 0   |                                                      |
| G3P Dehydrogenase          | Oxidoreductase | NAD+ $\rightarrow$ NADH; SLP             | thioester    | 6    | 0   | 1,3-BPG ( Substrate level phosphorylation); NADH     |
| Phosphoglycerate Kinase    | Transferase    | Phosphotransferase ADP $\rightarrow$ ATP | -            | -18  | -1  | Generates ATP                                        |
| Phosphoglycerate Mutase    | Isomerase      | Phosphate migration                      | 2,3-BPG      | 4    | -1  |                                                      |
| Enolase                    | Lyase          | Dehydration; Mg2+                        | enediol      | 8    | -2  | PEP                                                  |
| Pyruvate Kinase            | Transferase    | Phosphotransferase ADP $\rightarrow$ ATP | -            | -31  | -14 | a-keto -CO2- ; generates ATP                         |

#### Reactions with large $\Delta G'$ tend to be regulatory targets (Red)