Department of Chemistry and Biochemistry University of Lethbridge

Biochemistry 3300

III. Metabolism - Glycolysis

Major Pathways of Glucose Utilization

These three pathways are the most significant in terms of the amount of glucose that flows through them in most cells.

The Two Phases of Glycolysis

Breakdown of the glucose (6C) into two molecules of the pyruvate (3C) occurs in ten steps.

Ten steps of Glycolysis can be subdivided in two Phases:

- **I. The Preparatory Phase (steps 1-5)**
	- **spend ATP**
	- **glucose → 2 glyceraldehyde-3-phosphate**
- **II. The Payoff Phase (steps 6-10)**
	- **generate ATP & NADH**
	- **2 glyceraldehyde-3-phosphate → 2 pyruvate**

University of Lethbridge

Preparatory Phase of Glycolysis

Enzymes

- 2 Kinases
- 2 Isomerases
- 1 Aldolase

Payoff Phases of Glycolysis

Enzymes

- 2 Kinases
- 1 Mutase
- 1 Dehydrogenase
- 1 Enolase

Yield (in energy equivalents) per glucose

Chemical equation for glycolysis:

Glucose + 2NAD⁺ + 2ADP + 2P i

→ 2 pyruvate + 2NADH + 2H⁺ + 2ATP + 2H₂O

Formation of 2x pyruvate, NADH and H⁺ (energy released):

Glucose + 2NAD⁺ → 2 pyruvate + 2NADH + 2H⁺ ∆**G' 1 O = -146 kJ/mol**

Formation of 2 ATP (energy cost):

2ADP + 2P i → 2ATP + 2H 2

O ∆**G' 2 O = 61.0 kJ/mol**

$$
\Delta G'_{s}^{\circ} = \Delta G'_{1}^{\circ} + \Delta G'_{2}^{\circ} = -85 \text{ kJ/mol}
$$

A Historical Perspective

- **1854-1864: L. Pasteur establishes fermentation is caused by microorganisms.**
- **1897: E. Buchner demonstrates cell-free yeast extracts carry out this process.**
- **1905-1910: Arthur Harden and William Young discovered:**
	- **Inorganic phosphate is required for fermentation and is incorporated into fructose-1-6-bisphosphate**
	- **A cell-free yeast extract has a nondialyzable heat-labile fraction (zymase) and a dialyzable heat-stable fraction (cozymase).**

• **By 1940: Elucidation of complete glycolytic pathway (Gustav Embden, Otto Meyerhof, and Jacob Parnas).**

Otto Fritz Meyerhof & Archibald Vivian Hill *The Nobel Prize in Physiology or Medicine 1922*

Biochemistry 3300 Slide 8

University of

Hexokinase: First ATP Utilization

Reaction 1 : Transfer of a phosphoryl group from ATP to glucose to form glucose 6-phosphate (G6P)

Hexokinase: First ATP Utilization

The two domains (grey/green) swing together when bound to Pi

 - excludes H2O from active site (eg. electrostatic catalysis)

Phosphohexose Isomerase

Reaction 2: Phosphohexose isomerase catalyzes the conversion of G6P to F6P (ie. aldose to ketose isomerisation)

Phosphohexose Isomerase

PFK-1: Second ATP Utilization

Reaction 3: Phosophofructokinase-1 (PFK-1) phosphorylates fructose-6-phosphate (F6P)

PFK-1 plays a central role in control of glycolysis as it catalyzes one of the pathway's rate-determining reactions.

Irreversible under cellular conditions due to large, negative ∆**G'**

∆**G'° = -14.2 kJ/mol**

Fructose-1,6-bisphosphate (FBP)

Aldolase

Reaction 4: Aldolase catalyzes cleavage of fructose-1,6-bisphosphate (FBP)

How is the large, unfavourable ∆**G'° for this reaction overcome?**

The [Product]/[Substrate] is kept very small

Enzymes operating far from their equilibrium state are regulatory targets

∆**G'° = 23.8 kJ/mol**

Dihydroxyacetone phosphate (DHAP)

Retro Aldol Reaction

The aldolase mechanism is similar to the retro-aldol mechansim in organic chemistry

How could (and does) aldolase enhance the rate of this reaction?

Stabilize the carbanion !

Biochemistry 3300 Slide 15

University of Lethbridge

(Class I) Aldolase Reaction Mechanism

Formation of a protonated Schiff's base (Lys 229) that stabilizes the carbanion/enamine

Class I Aldolase (Schiff's base mechanism) Class II Aldolase (Metalloenzyme)

Biochemistry 3300 Slide 16

University of

Triose Phosphate Isomerase

Reaction 5: Interconversion of the triose phosphates

Triose Phosphate Isomerase

Ribbon diagram of **TPI** (**TIM)** in complex with its transition state analog 2-phosphoglycolate.

Flexible loop (light blue) makes a hydrogen bond with the phosphate group of the substrate.

Removal of loop (mutagenesis) does not impair substrate binding but reduces catalytic rate by 10⁵ fold.

> stereoelectronic control (electrostatic catalysis)

Summary of Reaction 4 & 5

University of Lethbridge

University of Lethbridge

Glyceraldehyde-3-Phosphate Dehydrogenase

Reaction 6: Glyceraldehyde-3-phosphate dehydrogenase forms the first "high-energy" intermediate.

Substrate Level Phosphorylation P_i is the substrate !!

High energy phosphodiester and NADH produced without expending ATP !!!

∆**G'° = 6.3 kJ/mol**

 $\begin{array}{ccc} {\rm O}_{\textstyle\searrow}_{\textstyle\sim_1{\rm C}}\!\!{\rm C}\\ {\rm H}_{\textstyle\!-\rm C}^{\textstyle\searrow}-{\rm OH} & +{\rm NAD}^+ +{\rm P}_i\\ {\rm CH_2OPO_3^{2-}}\\ \end{array}$ Glyceraldehyde 3-phosphate (GAP) $\left\{ \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{glyceraldehyde 3-phosphate} \\ \text{dehydrogenase (GAPDH)} \end{array} \end{array} \right. \end{array} \right. \end{array}$ $\begin{array}{ccc} O \ll_p & OPO_3^{2-} \\ H-Q & + & NADH & +H^+ \\ \ll_p & OPO_3^{2-} \\ \ll_p & OPO_3^{2-} \\ \ll_p & OPO_3^{2-} \\ \end{array}$ 1,3-Bisphoglycerate

 $(1,3-BPG)$

Glyceraldehyde 3-Phosphate Dehydrogenase Reaction Mechanism

Biochemistry 3300 Slide 23

University of

Glyceraldehyde 3-Phosphate Dehydrogenase (covalent intermediate)

University of Lethbridge

University of

Thioester is cleaved by Pi producing a high energy compound: 1,3-bisphosphoglycerate

Glyceraldehyde-3-Phosphate Dehydrogenase

Mechanistic Studies:

Biochemistry 3300 Slide 28

University of Lethbridge

Phosphoglycerate Kinase: First ATP Generation

Upon substrate binding, the two domains of PGK swing together, providing a waterfree environment (just like hexokinase)

Glycolysis:

Two kinase enzymes (hexokinase and PGK) are homologs with different substrate specificities

Phosphoglycerate Kinase: First ATP Generation

1,3-Bisphosphoglycerate $(1,3-BPG)$

3-Phosphoglycerate $(3PG)$

1,3-bisphosphoglycerate is a higher energy compound than ATP so the reaction has a large favourable free energy change

$$
\Delta G^{\prime\circ} = -18.5 \text{ kJ/mol}
$$

Mechanism of PGK reaction

Phosphotransferase reaction similar to hexokinase (and PFK) **Energetics of the Glyceraldehyde-3-Phosphate Dehydrogenase:Phosphoglycerate Kinase Reaction Pair**

 $GAP + P_i + NAD^+ \longrightarrow 1,3-BPG + NADH$ $\Delta G^{\circ}{}' = +6.7 \text{ kJ} \cdot \text{mol}^{-1}$

 $1,3-BPG + ADP \longrightarrow 3PG + ATP$ $\Delta G^{\circ} = -18.8 \text{ kJ} \cdot \text{mol}^{-1}$

 $GAP + P_i + NAD^+ + ADP \longrightarrow 3PG + NADH + ATP$ $\Delta G^{\circ} = -12.1 \text{ kJ} \cdot \text{mol}^{-1}$

Coupling the two steps of the pathway:

 Under standard condition: 1,3-BPG phosphotransfer drives the coupled reaction forming NADH and ATP.

Phosphoglycerate Mutase

Reaction 8: Catalyzes a reversible shift of the phosphoryl group between C-2 and C-3 of glycerate; Mg2+ and 2,3-bisphosphoglycerate are essential.

Reaction Mechanism of PGM

Catalytic amounts of 2,3-bisphosphoglycerate are required for enzymatic activity.

2,3-Bisphosphoglycerate $(2,3-BPG)$

2,3-bisphosphoglycerate 'activates' PGM by phosphorylating active site histidine

ie. Enzyme is inactive until phosphorylated

Reaction Mechanism of PGM

Step 1:

Phosphohistidine transfers phosphoryl to 3PG forming 2,3-BPG

Step 2:

2,3-BPG transfers phosphoryl (3C) to His forming 2BPG and phosphorylated His

Gycolysis Influences Oxygen Transport

2,3-BPG binds to deoxyhemoglobin and alters (decreases) oxygen binding affinity.

Erythrocytes synthesize and degrade 2,3-BPG using a 'detour' within the glycolytic pathway.

Gycolysis Influences Oxygen Transport

Lower [2,3-BPG] in erythrocytes resulting from hexokinase-deficiency results in increased hemoglobin oxygen affinity.

Higher [2,3-BPG] in erythrocytes resulting from PK-deficiency results in decreased hemoglobin oxygen affinity.

2-Phosphoglycerate $(2PG)$

Phosphoenolpyruvate (PEP)

$$
\Delta G^{\prime o} = 7.5 \text{ kJ/mol}
$$

University of

Enolase Reaction Mechanism

2-Phosphoglycerate bound to enzyme

Enolic intermediate

Phosphoenolpyruvate

Can be inhibited by F. Why? F - binds to strongly metals

Overall reaction is a dehydration

Enolase Reaction Mechanism

Structure of enolase catalytic center (PDB ID 1ONE)

Pyruvate Kinase : Second ATP Generation

Phosphoenolpyruvate (PEP)

> pyruvate kinase (PK)

$$
{}^{0}\!\!\mathbb{R} \, \text{C}^{-} \, \text{C}^{-} \, \text{C} \,
$$

Pyruvate

Not a homolog of other kinases in glycolysis

Irreversible under cellular conditions due to large, negative ∆**G'**

$$
\Delta G^{\prime o} = -31.4 \text{ kJ/mol}
$$

Biochemistry 3300 Slide 42

University of

The Payoff Phase

Summary of Enzyme Properties

Reactions with large G' tend to be regulatory targets (Red)