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1 Introduction

When we apply the steady-state approximation (SSA) in chemical kinetics, we typically argue that
some of the intermediates are highly reactive, so that they are removed as fast as they are made.
We then set the corresponding rates of change to zero. What we are saying is not that these rates
are identically zero, of course, but that they are much smaller than the other rates of reaction.

The steady-state approximation is often surprisingly accurate, but the classical arguments lack
rigor and don’t lead to any satisfying mathematical generalization which can be used to improve
on the approximation. There are two mathematical theories which build on the SSA and provide
the required generalization:

1. Slow manifold theory: The curves or surfaces which arise from the SSA can in fact be
understood as approximations to slow invariant manifolds of the differential equations. We
have touched on the relevant ideas in the previous lecture.

2. Singular pertubation theory: Perturbation methods generally try to write solutions of equa-
tions as power series in a small parameter. To understand the SSA, we will find that we are
led to problems in which the small parameter multiplies a derivative. These problems have
an interesting structure, which is both practically and theoretically important, and to which
we turn our attention in this lecture.

The two approaches are not unrelated, as we shall see in section 6.

2 Scaling and balancing

One of the problems with the classical SSA arguments is that they lead us to a quandary regard-
ing the establishment of quantitative criteria for their validity. Consider the Michaelis-Menten
mechanism:

E+S
k1

k−1

−⇀↽− C
k−2
−→ E+P (MM)

In this mechanism, E is the enzyme, S the substrate, P the product, and C the intermediate (enzyme-
substrate/product) complex.
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The classical argument runs something like this:1 Enzymes are highly effective catalysts. We
therefore expect the degradation of C to enzyme and product to be a fast process. Fast compared
to what? Compared to formation of the enzyme-substrate complex, runs the usual answer. This
argument is fine, as far as it goes, but what do we mean when we say that one chemical process is
faster than another? What numbers are we comparing? It can’t be rates, because in the steady state,
the rates of formation and of degradation are approximately the same. It can’t be rate constants,
becausek1 has different units fromk−1 andk−2.

There is no simple way out of this difficulty until we realize that we’re going to get in trouble
as long as we are trying to work with values which have units. If we could get rid of the units, we
might be able to find things to compare such that we can make rigorous statements about what it
means for one process to be fast compared to another.

Let’s start by writing down the rate equations for this mechanism:

dE
dt

= −k1ES+k−1C+k−2C, (1a)

dS
dt

= −k1ES+k−1C, (1b)

dC
dt

= k1ES−k−1C−k−2C, (1c)

dP
dt

= k−2C. (1d)

Mass conservation gives us the two equations

E0 = E +C,

S0 = S+C+P.

Note that these conservation relations areconsequencesof the differential equations sincedE
dt +

dC
dt = dS

dt + dC
dt + dP

dt = 0. Using these algebraic equations therefore doesn’t change anything about
the solutions. It only reduces the set of differential equations 1 to theexactly equivalentplanar
system

dS
dt

= −k1S(E0−C)+k−1C, (2a)

dC
dt

= k1S(E0−C)− (k−1 +k−2)C. (2b)

(2c)

The insight behind the SSA is that the concentrations of highly reactive intermediates like C
eventually reach a rough balance between production and destruction, such that the net rate of
change ofC is small. We want to make that balance evident. To do this, we first have to choose
new measurement scales for each of the variables (S, C andt) such that each is of unit magnitude.
In other words, we want to define new variabless, c andτ by

s = S/S̃, (3a)

c = C/C̃, (3b)

and τ = t/t̃, (3c)

1The classical argument can be put a little better than this, but the underlying problem remains.

2



where the tilde indicates a measurement scale whose units are the same as those of the correspond-
ing variable and such that the new variables are, insofar as this is possible, of unit magnitude.

It’s easy to choosẽS: In most experiments, we will start withS(0) = S0, so

S̃= S0 (4)

should be a good choice.
ChoosingC̃ is trickier, but still not all that difficult. If we start at the initial point(S,C) = (S0,0),

which again is what we typically do in experiments, thenC will initially rise to some maximum,
and then fall toward zero (the equilibrium concentration). From calculus, we know that the function
C(t) will reach a maximum whendC/dt = 0, i.e. when

C =
k1E0S

k1S+k−1 +k−2
. (5)

Note that this is the classical SSA. If we knew the value ofS whenC reaches its maximum, we
could plug it in and use that as̃C. However, we have no easy way of estimating this value ofS.
That being said, we don’t need to know the maximum value ofC exactly. We really only need
an order-of-magnitude estimate to be used as a scale factor. We expect the maximum inC to be
reached early in the reaction, before muchShas been consumed. We therefore substituteS= S0

into equation 5, and get

C̃ =
k1E0S0

k1S0 +k−1 +k−2
=

E0S0

S0 +KS
, (6)

whereKS = (k−1 +k−2)/k1 is the Michaelis constant, well known from classical enzyme kinetics.
It’s not at all clear what we should use fort̃, so for now we’ll just substitute equations 3 into

the rate equations 2, using the scaling factors 4 and 6, and see what we get.

S = sS0.

C = cC̃ = c
E0S0

S0 +KS
.

t = τt̃.

∴
dS
dt

=
d(sS0)
d(τt̃)

=
S0

t̃
ds
dτ

= −k1sS0

(
E0−c

E0S0

S0 +KS

)
+k−1c

E0S0

S0 +KS
.

∴
ds
dτ

= t̃

{
−k1E0s

(
1−c

S0

S0 +KS

)
+k−1c

E0

S0 +KS

}
.

Similarly, forC:
dc
dτ

= t̃k1(S0 +KS)
{

s

(
1−c

S0

S0 +KS

)
−c

KS

S0 +KS

}
.

Let

α =
S0

S0 +KS
.
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This is a parameter between 0 and 1. Our two rate equations become

ds
dτ

= t̃

{
−k1E0s(1−αc)+k−1c

E0

S0 +KS

}
,

dc
dτ

= t̃k1(S0 +KS){s(1−αc)−c(1−α)} .

The terms in the brace of the second of these equations are now clearly balanced: Each is made up
of a product of quantities which are of unit magnitude. There only remains to chooset̃.

For many enzymes, the back reaction C→ E+ S isn’t particularly significant. Under these
conditions,ds/dτ should be dominated by the first term,−k1E0s(1−αc)t̃. This suggests that we
should take

t̃−1 = k1E0,

in order to bring out the balance between the derivative and this term. To put it another way, we
expect(k1E0)−1 to represent a slow time scale controlling the rate at which the substrate is used up.
Obviously, if the above hypothesis is false for some particular enzyme, we should make a different
choice fort̃. In any event, our choice leads to

ds
dτ

= −s(1−αc)+c
k−1

k−1 +k−2
(1−α),

dc
dτ

=
S0 +KS

E0
{s(1−αc)−c(1−α)} .

Define

β =
k−1

k−1 +k−2
,

and µ =
E0

S0 +KS
.

Then we have

ds
dτ

= −s(1−αc)+βc(1−α), (7a)

and µ
dc
dτ

= s(1−αc)−c(1−α). (7b)

In classical enzymology, it is often said that the SSA is valid when the enzyme concentration
is small. This corresponds to a small value ofµ. The above scaling provides a justification for this
statement, as well as a precise condition for its validity: Ifµ is very small, then the differential
equation 7b is “close” to the algebraic equation

0≈ s(1−αc)−c(1−α), (8)

i.e. the SSA. A small value ofµ implies that

E0� S0 +KS,
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i.e. the SSA will be valid under this condition. Note that this is a sufficient, but not a necessary
condition. If we scaled time differently, we might find other conditions which lead to the validity
of the SSA.

Note that there’s something funny about what we’re doing here. We started out with two
differential equations, and ended up saying that one of the differential equations degenerates to
an algebraic equation. A system of two differential equations is quite different from a single
differential equation with an algebraic constraint: The first requires the values of boths and c
to specify the initial condition, while the latter requires only a value fors, the value ofc being
computed from equation 8. We have changed the nature of the problem by considering the limit
µ→ 0, a limit which can never be realized in practice. Problems like this are calledsingular
perturbation problems. Because the problem we started with and the problem we obtain in
the limit in which our small parameter reaches zero are different in nature, singular perturbation
problems can be very tricky. However, they show up all over the sciences, so it’s well worth
thinking about them a bit more.

Despite the oddity of singular perturbation problems, the use of the limitµ= 0 to approximate
the slow manifold (which is what we get from equation 8 if we solve forc) is supported by a
theorem: Consider a system of differential equations of the form

dx
dt

= f(x,z, t), (9a)

µ
dz
dt

= g(x,z, t). (9b)

In the singular limitµ= 0, we obtain the system

dx
dt

= f(x,z, t),

z = φ(x, t),

where the second of these equations is the solution ofg(x,z, t) = 0. This is called thedegenerate
system. Finally, we define theadjoined system, which is just

dz
dt

= g(x,z, t),

where now we treatx andt as constants.2

Theorem 1 (Tikhonov’s theorem) When µ→ 0, the solution of the system 9 tends to the solution
of the degenerate system ifz = φ(x, t) is a stable root of the adjoined system.

(The condition regarding the stability of the adjoined system is rarely checked, although it should
be.) The upshot of Tikhonov’s theorem is that for sufficiently smallµ, there is always a slow
manifold whose formula is approximately given by the SSA. Further details can be obtained from
Klonowski’s excellent review paper [1].

2If you’re wondering where theµ went in the adjoined system, the time variable can be rescaled in such a way as
to make this coefficient disappear. Since stability doesn’t depend on how we scale time, there’s no point carrying this
parameter around.
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Now imagine that we start an experiment at the point(s,c) = (1,0) for a system with a small
value ofµ. Initially, becausec = 0, we will have ˙c≡ dc/dτ = 1/µ. This is a large (becauseµ is
small), positive quantity. The intermediate complex concentration will therefore increase rapidly at
first, with a characteristic rise time ofµ. However, asc increases, ˙c will become smaller. Because
µ is small, the right-hand side of equation 7b should also remain small, i.e. equation 8 will become
valid. In other words, we can separate the time course of the reaction into two parts:

1. The rapid rise in the intermediate concentration: In chemical kinetics, we call this thein-
duction period, or sometimes thetransient. In singular perturbation theory, this is called
the inner solution.3

2. A slower decay toward equilibrium during which the SSA is at least approximately valid.
This is theouter solution.3

3 The outer solution

In this section, we obtain the outer solution to lowest order inµ. This uses elementary techniques
which you should have seen in your undergraduate courses. Higher order approximations can be
obtained. See Heineken, Tsuchiya and Aris [2] for details.

Solving equation 8 forc, we get

c =
s

αs+1−α
. (10)

Substituting this equation into the differential equation 7a, we get

ds
dτ

= −s

(
1−α

s
αs+1−α

)
+β(1−α)

s
αs+1−α

= −s(1−α)(1−β)
αs+1−α

.

This equation is easily solved by separation of variables:Z s

s0

ds
αs+1−α

s
= −(1−α)(1−β)

Z τ

τ0

dτ.

∴−(1−α)(1−β)(τ− τ0) =
Z s

s0

ds

(
α+

1−α
s

)
= α(s−s0)+(1−α) ln(s/s0).

The constantss0 and t0 represent the state of the system at some time after it has reached the
manifold. These are therefore arbitrary quantities not related (at least not in any simple way) to

3The terms “inner solution” and “outer solution” are such for historical reasons: Singular perturbation problems
were first considered in fluid dynamics, where the inner solution referred to the behavior near a wall, while the outer
solution referred to the behavior away from the wall.
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the true initial conditions of the system. We can therefore combine these constants into a single,
arbitrary constantA:

−(1−α)(1−β)τ+A = αs+(1−α) lns. (11)

We will determine the constantA later.

4 The inner solution

The inner solution is a bit trickier to obtain. The problem is that the equations 7 are scaled wrong.
Given our scaling of time, the rise time for the intermediate complex isµ, which is a small quantity.
In order to study the inner solution, we have to rescale the equations such that the rise time is not
small. The easiest way to do this is as follows:

τ = µθ.

The new time variableθ is stretched by a factor of 1/µ relative toτ. Our rate equations become

ds
dθ

= µ[−s(1−αc)+βc(1−α)] , (12a)

and
dc
dθ

= s(1−αc)−c(1−α). (12b)

Settingµ= 0, i.e. to the same level of approximation as our outer solution, we get

ds
dθ

= 0

with equation 12b remaining as is. It follows that we can, to the lowest level of approximation,
assume thats is approximately constant during the induction period. To distinguish this solution
from the outer solution, we definesin to be the inner solution. Sinces= S/S0, andS0 is the initial
concentration of S,sin = 1 to lowest order inµ.

With s= sin = 1, equation 12b reduces to

dc
dθ

= 1−c.

This is a simple linear differential equation which can be integrated from the initial conditionc= 0:Z c

0

dc
1−c

=
Z θ

0
dθ.

∴ θ = − ln(1−c),
or c = 1−e−θ. (13)

5 Matching the inner and outer solutions

Since they just represent two pieces of the same trajectory, the inner and outer solutions have to
match up. This will provide us with conditions from which we will determine the parameterA.
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The outer solution is supposed to be valid for values ofτ which aren’t too small, while the inner
solution is valid whenτ isn’t too large. To match the two solutions, we consider small values of
τ and large values ofθ. At small values ofτ, the outer solution should represent early moments
after the decay of the transient, while large values ofθ should correspond to the very late stages
of the induction period. If we have done everything right, we should be able to match up the two
solutions in this intermediate regime. If we letτ→ 0 ands→ sin in the outer solution 11, we get

A = αsin +(1−α) lnsin = α.

Thus,s satisfies
−(1−α)(1−β)τ+α = αs+(1−α) lns (14)

in the outer solution region.
Matching the values ofc yields no extra information in this case: If we puts = sin = 1 in

equation 10, we getc = 1. If we take the limitτ → ∞ in equation 13, we getc→ 1. Thec
components of the solution therefore match up automatically.

The overall procedure for doing singular perturbation work is always as shown here, at least in
outline:

1. Develop an appropriate scaling for the equations. Identify the small parameter(s).

2. Find the outer solution.

3. Find the inner solution.

4. Match up the two solutions in an intermediate time range.

The only wrinkles are that we may want the solutions developed to higher order than we have done
here, and that the matching procedure is sometimes difficult to carry out properly.

6 Geometric singular perturbation theory and the outer solu-
tion

Our work in the previous few sections focused on the temporal evolution of the system. Equation
14 for instance relates the timeτ to s in the outer solution. However, we have hinted that these
considerations are connected to the slow manifold, a structure which is best understood in phase
space. We now make this connection explicit by working out a singular perturbation expansion of
the slow manifold. The theoretical framework for doing this was first provided by Fenichel [3] and
is known asgeometric singular perturbation theory.

Note that equation 10 suggests that the manifold can be written in the formc = c(s). The
manifold equation for our system would therefore be

dc
dτ

=
dc
ds

ds
dτ

.
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We havedc/dτ andds/dτ from equations 7. We know that, for smallµ, the manifold reduces to
the form 10. One simple way to use this knowledge is to write the manifold as a power series inµ:

c(s) =
∞

∑
i=0

γi(s)µi . (15)

We should find (and will confirm) thatγ0 is given by equation 10.
In order to find the unknown functionsγi(s) (written simply asγi from here on), we substitute

the power series 15 into the manifold equation. I will carry out this procedure in steps:

dc
ds

=
∞

∑
i=0

dγi

ds
µi .

dc
dτ

=
1
µ

{
s

(
1−α

∞

∑
i=0

γiµ
i

)
− (1−α)

∞

∑
i=0

γiµ
i

}

=
s
µ
−αs

∞

∑
i=0

γiµ
i−1− (1−α)

∞

∑
i=0

γiµ
i−1

=
s
µ
− (αs+1−α)

∞

∑
i=0

γiµ
i−1.

ds
dτ

= −s

(
1−α

∞

∑
i=0

γiµ
i

)
+β(1−α)

∞

∑
i=0

γiµ
i

= −s+[αs+β(1−α)]
∞

∑
i=0

γiµ
i .

∴
s
µ
− (αs+1−α)

∞

∑
i=0

γiµ
i−1 =

∞

∑
i=0

dγi

ds
µi

{
−s+[αs+β(1−α)]

∞

∑
i=0

γiµ
i

}
. (16)

We now want to collect terms in powers ofµ. We could just read these terms directly from the
equation. For instance, the leading terms are theµ−1 terms:

1
µ
{s− (αs+1−α)γ0}= 0.

Since this equation must be true for anyµ 6= 0, the term in braces must be zero, i.e.

γ0 =
s

αs+1−α
, (17)

which is exactly what we said this term should be. It’s not too difficult to do this provided we’re
only interested in small powers. However, if we want to develop a general equation which would
allow us to obtain the series expansion of the manifold to arbitrary order, it is convenient to rewrite
equation 16 so that each side appears as a power series inµ, rather than as a complicated expression
involving, among other things, a product of series. Furthermore, it is convenient to write these
series so that they are sums involvingµi rather than, as on the left-hand side,µi−1 or other such
expressions. There are rules for rewriting sums which you may have learned in some of your
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mathematics courses. If not, the following examples will hopefully let you see the logic behind
these rules, which isn’t too hard once you’ve done a few examples.

The first sum on the left-hand side of equation 16 is fairly easy to rewrite in the desired form:

∞

∑
i=0

γiµ
i−1 =

∞

∑
i=−1

γi+1µi .

If you can’t see this immediately, try writing out the first few terms of each side of this identity.
The trickiest bit is the product of sums on the right-hand side of equation 16. Here is the

transformation: (
∞

∑
j=0

dγ j

ds
µj

)(
∞

∑
k=0

γkµ
k

)
=

∞

∑
i=0

µi
i

∑
j=0

dγ j

ds
γi− j .

The renaming of the summation indicies on the left-hand side is a convenience introduced for
clarity. The key observation is that multiplying the two sums produces terms inµi when j +k = i.

We’re now ready to go back to equation 16:

s
µ
− (αs+1−α)

∞

∑
i=−1

γi+1µi =−s
∞

∑
i=0

dγi

ds
µi +[αs+β(1−α)]

∞

∑
i=0

µi
i

∑
j=0

dγ j

ds
γi− j .

Reading off terms in each power ofµ is now easy:

µ−1 : s− γ0(αs+1−α) = 0.

µi , i ≥ 0 : −γi+1(αs+1−α) =−s
dγi

ds
+[αs+β(1−α)]

i

∑
j=0

dγ j

ds
γi− j .

We have seen the first of these equations, and even written down its solution (equation 17). The
second equation can be rewritten in the form

γi+1 =
1

αs+1−α

{
s
dγi

ds
− [αs+β(1−α)]

i

∑
j=0

dγ j

ds
γi− j

}
.

Note that we only need to know the formulas of theγ’s up to i to determine thei +1’st term in the
series. For instance,γ1 is calculated by

γ1 =
1

αs+1−α

{
s
dγ0

ds
− [αs+β(1−α)]

dγ0

ds
γ0

}
=

s(1−α)2(1−β)
(αs+1−α)4 .

As you can imagine, these calculations get tedious pretty quickly. In the old days, we used to fill
up notebooks with perturbation series, carefully simplified by hand. It was very error-prone, and
we would often spend more time verifying our answers than we did doing the initial calculation.
Nowadays, we just use Maple. It’s much faster, but it’s still a good idea to calculate a few terms by
hand to check that Maple is doing the calculation correctly.

10



References

[1] W. Klonowski, Simplifying principles for chemical and enzyme reaction kinetics, Biophys.
Chem. 18 (1983) 73–87.

[2] F. Heineken, H. Tsuchiya, R. Aris, On the mathematical status of the pseudo-steady state
hypothesis of biochemical kinetics, Math. Biosci. 1 (1967) 95–113.

[3] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff.
Eqs. 31 (1979) 53–98.

11


