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1 Introduction

When we apply the steady-state approximation (SSA) in chemical kinetics, we typically argue that
some of the intermediates are highly reactive, so that they are removed as fast as they are made.
We then set the corresponding rates of change to zero. What we are saying is not that these rates
are identically zero, of course, but that they are much smaller than the other rates of reaction.

The steady-state approximation is often surprisingly accurate, but the classical arguments lack
rigor and don’t lead to any satisfying mathematical generalization which can be used to improve
on the approximation. There are two mathematical theories which build on the SSA and provide
the required generalization:

1. Slow manifold theory: The curves or surfaces which arise from the SSA can in fact be
understood as approximations to slow invariant manifolds of the differential equations. We
have touched on the relevant ideas in the previous lecture.

2. Singular pertubation theory: Perturbation methods generally try to write solutions of equa-
tions as power series in a small parameter. To understand the SSA, we will find that we are
led to problems in which the small parameter multiplies a derivative. These problems have
an interesting structure, which is both practically and theoretically important, and to which
we turn our attention in this lecture.

The two approaches are not unrelated, as we shall see in section 6.

2 Scaling and balancing

One of the problems with the classical SSA arguments is that they lead us to a quandary regard-
ing the establishment of quantitative criteria for their validity. Consider the Michaelis-Menten
mechanism:

ki koo
E+S—C—E+P (MM)
k-1

In this mechanism, E is the enzyme, S the substrate, P the product, and C the intermediate (enzyme-
substrate/product) complex.



The classical argument runs something like thEnzymes are highly effective catalysts. We
therefore expect the degradation of C to enzyme and product to be a fast process. Fast compared
to what? Compared to formation of the enzyme-substrate complex, runs the usual answer. This
argument is fine, as far as it goes, but what do we mean when we say that one chemical process is
faster than another? What numbers are we comparing? It can't be rates, because in the steady state,
the rates of formation and of degradation are approximately the same. It can’t be rate constants,
becausd; has different units fronk_1 andk_».

There is no simple way out of this difficulty until we realize that we're going to get in trouble
as long as we are trying to work with values which have urita/e could get rid of the units, we
might be able to find things to compare such that we can make rigorous statements about what it
means for one process to be fast compared to another.

Let’s start by writing down the rate equations for this mechanism:

dd—ItE = —kES+k 1C+k »C, (18.)
?j_ts = —kES+k 1C, (1b)
dd—? = KES—k 1C—k »C, (1c)
dP
rri k_>C. (1d)
Mass conservation gives us the two equations
Eoh = E+C,
S = S+C+P

Note that these conservation relations esasequencesf the differential equations sinc% +

%—f = ‘é—tSJr %—f + ‘é—f = 0. Using these algebraic equations therefore doesn’t change anything about

the solutions. It only reduces the set of differential equations 1 t@xhetly equivalenplanar
system

O~ kS(E-O)tkiC (2a)

dc

m kiS(Ep—C) — (k-1+k-2)C. (2b)
(2¢)

The insight behind the SSA is that the concentrations of highly reactive intermediates like C
eventually reach a rough balance between production and destruction, such that the net rate of
change ofC is small. We want to make that balance evident. To do this, we first have to choose
new measurement scales for each of the varialdeS &ndt) such that each is of unit magnitude.

In other words, we want to define new variabdgs andt by

s = /S (3a)
c = C/C, (3b)
and T = t/f, (3c)

1The classical argument can be put a little better than this, but the underlying problem remains.
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where the tilde indicates a measurement scale whose units are the same as those of the correspond-
ing variable and such that the new variables are, insofar as this is possible, of unit magnitude.
It's easy to choos&: In most experiments, we will start with(0) = &, so

S=95 (4)

should be a good choice.
ChoosingC is trickier, but still not all that difficult. If we start at the initial poit$,C) = (S, 0),
which again is what we typically do in experiments, tt@will initially rise to some maximum,
and then fall toward zero (the equilibrium concentration). From calculus, we know that the function
C(t) will reach a maximum whedC/dt =0, i.e. when

kiEoS

C= . 5
KiS+k_1+k_2 ®)

Note that this is the classical SSA. If we knew the valu&efhenC reaches its maximum, we
could plug it in and use that & However, we have no easy way of estimating this valu8. of
That being said, we don’t need to know the maximum valu€ efxactly. We really only need
an order-of-magnitude estimate to be used as a scale factor. We expect the maxi@tonbe
reached early in the reaction, before m&has been consumed. We therefore substifuteS,
into equation 5, and get
~ k E
& 1E0So _ BS ’ (©)
kKiSo+k1+ko SH+Ks
whereKs = (k_1 + k_2)/k1 is the Michaelis constant, well known from classical enzyme kinetics.

It's not at all clear what we should use fijrso for now we’ll just substitute equations 3 into
the rate equations 2, using the scaling factors 4 and 6, and see what we get.

S = sS.
T =
C = CC_CSO+K
t = 1f.
dS  d(s$) Sd
Tdt  d(Th) _?d_
B EoSo EoSo
= _klsS)<EO_CS)—}—K>+k_ S)+K

ds . S
g T t{—klE()S(l—C )

b

Similarly, forC:
dc . S Ks
— =tk K 1-— - :
I 1(So+ s){s( CSo+Ks) CSO+KS}
Let S
= S+Ks’
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This is a parameter between 0 and 1. Our two rate equations become

ds . Eo
el t{—klEos(l—GC)+k_1CSO+KS}’
% = tk(S+Ks){s(1-ac)—c(l-a)}.

The terms in the brace of the second of these equations are now clearly balanced: Each is made up
of a product of quantities which are of unit magnitude. There only remains to choose
For many enzymes, the back reaction-CE + S isn’t particularly significant. Under these
conditions,ds/dt should be dominated by the first termk; Egs(1 — ac)f. This suggests that we
should take
1= k1Eo,

in order to bring out the balance between the derivative and this term. To put it another way, we
expect(k;Eg) ! to represent a slow time scale controlling the rate at which the substrate is used up.
Obviously, if the above hypothesis is false for some particular enzyme, we should make a different
choice forf. In any event, our choice leads to

ds k_1

a = —S(l—GC)+Cm(1—G),
dc B S+Ks
g - B {s(l—ac)—c(1l—a)}.
Define
b= ko1+ko
Eo
and = )
H S+Ks
Then we have
S—TS = —s(1—ac)+PBc(l—a), (7a)
and u%: = s(l—ac)—c(l—aqa). (7b)

In classical enzymology, it is often said that the SSA is valid when the enzyme concentration
is small. This corresponds to a small valugiofrhe above scaling provides a justification for this
statement, as well as a precise condition for its validityp 1§ very small, then the differential
equation 7b is “close” to the algebraic equation

O~s(l-ac)—c(l—a), (8)
i.e. the SSA. A small value qfimplies that

Eo < S +Ks,
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i.e. the SSA will be valid under this condition. Note that this is a sufficient, but not a necessary
condition. If we scaled time differently, we might find other conditions which lead to the validity
of the SSA.

Note that there’s something funny about what we’re doing here. We started out with two
differential equations, and ended up saying that one of the differential equations degenerates to
an algebraic equation. A system of two differential equations is quite different from a single
differential equation with an algebraic constraint: The first requires the values ofslaott ¢
to specify the initial condition, while the latter requires only a valuedathe value ofc being
computed from equation 8. We have changed the nature of the problem by considering the limit
M — 0, a limit which can never be realized in practice. Problems like this are csiltegllar
perturbation problems. Because the problem we started with and the problem we obtain in
the limit in which our small parameter reaches zero are different in nature, singular perturbation
problems can be very tricky. However, they show up all over the sciences, so it's well worth
thinking about them a bit more.

Despite the oddity of singular perturbation problems, the use of the}limi0 to approximate
the slow manifold (which is what we get from equation 8 if we solvedprs supported by a
theorem: Consider a system of differential equations of the form

dx

a = f<X7Z7t)7 (9a)
dz
Ha - g(X,Z,t). (gb)
In the singular limitu = 0, we obtain the system
dx
il f(x,zt),
z = g(xt),

where the second of these equations is the soluti@i»k,t) = 0. This is called thelegenerate
system Finally, we define thadjoined system which is just

=g(X,z1)
dt g )= )
where now we treat andt as constants.

Theorem 1 (Tikhonov's theorem) When p— 0, the solution of the system 9 tends to the solution
of the degenerate systenzif @(x,t) is a stable root of the adjoined system.

(The condition regarding the stability of the adjoined system is rarely checked, although it should
be.) The upshot of Tikhonov's theorem is that for sufficiently smpalthere is always a slow
manifold whose formula is approximately given by the SSA. Further details can be obtained from
Klonowski’s excellent review paper [1].

2If you're wondering where thg went in the adjoined system, the time variable can be rescaled in such a way as
to make this coefficient disappear. Since stability doesn’t depend on how we scale time, there’s no point carrying this
parameter around.



Now imagine that we start an experiment at the pént) = (1,0) for a system with a small
value ofp. Initially, becausec = 0, we will havec'= dc/dt = 1/p. This is a large (becaugeis
small), positive quantity. The intermediate complex concentration will therefore increase rapidly at
first, with a characteristic rise time pf However, a< increasesg will become smaller. Because
pis small, the right-hand side of equation 7b should also remain small, i.e. equation 8 will become
valid. In other words, we can separate the time course of the reaction into two parts:

1. The rapid rise in the intermediate concentration: In chemical kinetics, we call this-the
duction period, or sometimes th&ansient. In singular perturbation theory, this is called
theinner solution.?

2. A slower decay toward equilibrium during which the SSA is at least approximately valid.
This is theouter solution.

3 The outer solution

In this section, we obtain the outer solution to lowest ordgt ifthis uses elementary techniques
which you should have seen in your undergraduate courses. Higher order approximations can be
obtained. See Heineken, Tsuchiya and Aris [2] for detalils.

Solving equation 8 foc, we get <

c=——.
as+1—a
Substituting this equation into the differential equation 7a, we get

(10)

ds S S
dt _S(l_aas+l—a)+B(1_a)as+1—a
_ si-a)(a-p)
os+1—a

This equation is easily solved by separation of variables:

/S:dsw _ —(1—G)(1—B)/TdT.

S=(1=a)1-B)(T-T0) = /Sds<°‘+ LTG)

)
= 0(s—s)+(1—0a)ln(s/s).

The constantsy andty represent the state of the system at some time after it has reached the
manifold. These are therefore arbitrary quantities not related (at least not in any simple way) to

3The terms “inner solution” and “outer solution” are such for historical reasons: Singular perturbation problems
were first considered in fluid dynamics, where the inner solution referred to the behavior near a wall, while the outer
solution referred to the behavior away from the wall.



the true initial conditions of the system. We can therefore combine these constants into a single,
arbitrary constané:
—(1-a)(1-B)t+A=0s+(1—-a)lns. (11)

We will determine the constatlater.

4 The inner solution

The inner solution is a bit trickier to obtain. The problem is that the equations 7 are scaled wrong.
Given our scaling of time, the rise time for the intermediate complgxvghich is a small quantity.

In order to study the inner solution, we have to rescale the equations such that the rise time is not
small. The easiest way to do this is as follows:

T = 6.
The new time variabl@ is stretched by a factor of/f1 relative tot. Our rate equations become

ds

g = MI-sl—ac)+pe(l-a)l, (12a)
and % = s(l-ac)—c(l—a). (12b)
Settingu= 0, i.e. to the same level of approximation as our outer solution, we get
ds
46— 0

with equation 12b remaining as is. It follows that we can, to the lowest level of approximation,
assume thas is approximately constant during the induction period. To distinguish this solution
from the outer solution, we defirgg, to be the inner solution. Sinee= S/, andS is the initial
concentration of Sg, = 1 to lowest order inu

With s=s, = 1, equation 12b reduces to

dc
i
This is a simple linear differential equation which can be integrated from the initial conditdh
¢ dc 0
0ol-c /0 a°.
2.0 = —In(l-o),
or ¢ = 1-¢e9, (13)

1-c.

5 Maitching the inner and outer solutions

Since they just represent two pieces of the same trajectory, the inner and outer solutions have to
match up. This will provide us with conditions from which we will determine the paranfeter
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The outer solution is supposed to be valid for values which aren’t too small, while the inner
solution is valid whert isn’'t too large. To match the two solutions, we consider small values of
T and large values d. At small values oft, the outer solution should represent early moments
after the decay of the transient, while large value® should correspond to the very late stages

of the induction period. If we have done everything right, we should be able to match up the two
solutions in this intermediate regime. If we fet> 0 ands — s, in the outer solution 11, we get

A=asp+(1-0a)lns, =a.

Thus,s satisfies
—(1-a)(1-B)t+a=0s+(1—a)lns (14)

in the outer solution region.

Matching the values of yields no extra information in this case: If we paie= 5, =1 in
equation 10, we get = 1. If we take the limitt — o« in equation 13, we get — 1. Thec
components of the solution therefore match up automatically.

The overall procedure for doing singular perturbation work is always as shown here, at least in
outline:

1. Develop an appropriate scaling for the equations. Identify the small parameter(s).
2. Find the outer solution.

3. Find the inner solution.

4. Match up the two solutions in an intermediate time range.

The only wrinkles are that we may want the solutions developed to higher order than we have done
here, and that the matching procedure is sometimes difficult to carry out properly.

6 Geometric singular perturbation theory and the outer solu-
tion

Our work in the previous few sections focused on the temporal evolution of the system. Equation
14 for instance relates the timeto s in the outer solution. However, we have hinted that these
considerations are connected to the slow manifold, a structure which is best understood in phase
space. We now make this connection explicit by working out a singular perturbation expansion of
the slow manifold. The theoretical framework for doing this was first provided by Fenichel [3] and
is known aggeometric singular perturbation theory.

Note that equation 10 suggests that the manifold can be written in thedetm(s). The
manifold equation for our system would therefore be

dc_deds
dt dsdt’



We havedc/dt andds/dt from equations 7. We know that, for smallthe manifold reduces to
the form 10. One simple way to use this knowledge is to write the manifold as a power segfries in

o5 = 3 WM. 15)

We should find (and will confirm) thap is given by equation 10.
In order to find the unknown functiong(s) (written simply asy; from here on), we substitute
the power series 15 into the manifold equation. | will carry out this procedure in steps:

dC_ oodyii
ds H-

2 ds
g = 3{8(1—aiiw>—(1—G)iiviui}
i—1

[oe]

S oo i—1 i—
= [0Sy Vi —(1-0) 3 vik
H i;)I i;I
S .
= Z—(as+1-0a) Syt
M ( )i;v.u

g—f = —S<1—G_iwu‘> +B(1—0)_iviu‘

= —s+[as+B(1—a)] _;w W

S— (as+1-— a)iiwu‘l = i% u {—s+ [as+ B(l—a)]iiwui} : (16)

We now want to collect terms in powers j@f We could just read these terms directly from the
equation. For instance, the leading terms argquthieterms:

5{3— (as+1—0a)y} =0.

Since this equation must be true for gmy~ 0, the term in braces must be zero, i.e.

S

= — 17
os+1—a’ (17)

Yo
which is exactly what we said this term should be. It's not too difficult to do this provided we're
only interested in small powers. However, if we want to develop a general equation which would
allow us to obtain the series expansion of the manifold to arbitrary order, it is convenient to rewrite
eguation 16 so that each side appears as a power sepigsither than as a complicated expression
involving, among other things, a product of series. Furthermore, it is convenient to write these
series so that they are sums involvipigrather than, as on the left-hand sigi; ! or other such
expressions. There are rules for rewriting sums which you may have learned in some of your
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mathematics courses. If not, the following examples will hopefully let you see the logic behind
these rules, which isn’'t too hard once you've done a few examples.
The first sum on the left-hand side of equation 16 is fairly easy to rewrite in the desired form:

_Z}wu‘ =3 Yo
i=

i=—1

If you can’t see this immediately, try writing out the first few terms of each side of this identity.
The trickiest bit is the product of sums on the right-hand side of equation 16. Here is the

transformation:
(o) d (%) i d
( vj )(Zw> %u vj

The renaming of the summation indicies on the left-hand side is a convenience introduced for
clarity. The key observation is that multiplying the two sums produces terpisihenj +k =i.
We're now ready to go back to equation 16:

[e) | d
—(as+1—a) zpr_—sZ)d u+[as+[31 a) Z) Z)d_ysjyj

i=—1
Reading off terms in each power pis now easy:

et s—Yo(as+1—a)=0.
dy; dVJ

i 205 —hsa(ds+1-0) =~ s+ BL-w] 5 Govi

We have seen the first of these equations, and even written down its solution (equation 17). The

second equation can be rewritten in the form

- 1 dvyi dy;
Yi+1= m{sg—[ds—i—ﬁ(l—a” ds Y-

Note that we only need to know the formulas of tfeeup toi to determine thé+ 1'st term in the
series. For instancg is calculated by

_ 1 JAyo 190
o= as+1—a{“ds las+B(1 0()]d y}

s(1-a)*(1-B)
(as+1—a)*

As you can imagine, these calculations get tedious pretty quickly. In the old days, we used to fill
up notebooks with perturbation series, carefully simplified by hand. It was very error-prone, and
we would often spend more time verifying our answers than we did doing the initial calculation.
Nowadays, we just use Maple. It's much faster, but it's still a good idea to calculate a few terms by
hand to check that Maple is doing the calculation correctly.
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