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Maps are algebraic rules for computing the next state of dynamical systems in discrete time.
Differential equations and maps have a number of important connections which we explore in this
lecture. Many of the topics mentioned in these notes are also connected to each other. You may be
able to see some of the connections immediately, but in any case you should certainly think about
them.

1 Numerical methods as maps

In an earlier lecture, we noted that Euler’s method for integrating differential equations,

zn+1 = zn +hf(zn),

is a map: Given the state in step n, the state in step n + 1 can be computed from the differential
equation (f(zn)) and the size of the time step h. Many numerical integration methods can be
understood as maps, albeit usually more complicated ones than this.

In the limit of small step size, sensible numerical integration methods converge to a solution of
the corresponding differential equation. However, at larger step sizes, there are no guarantees.

Example 1.1 Consider the logistic1 differential equation

dx
dt

= x(1− x).

Euler’s method for this differential equation is

xn+1 = xn +hxn(1− xn) = xn(1+h−hxn). (1)

This is called the logistic map. (This map is actually better known in a slightly different
form. Let yn = hxn/(1+h) and λ = 1+h. Then, yn+1 = λyn(1− yn).)

The logistic differential equation has very simple behavior: x = 0 is an unstable equilibrium
point, while x = 1 is a stable equilibrium. The logistic map on the other hand, can display an
astonishing variety of attractors, depending on the parameters. Figure 1 gives some exam-
ples. For smallish values of h (up to about h = 2), the iterates of the logistic map 1 converge

1This differential equation has applications in some problems in logistics, which is the systematic study of problems
associated with the movement of goods or people to meet needs in distant locations.
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Figure 1: Some time series obtained from the application of the Euler method to the logistic
differential equation for various values of h. The lines connecting the points are only there to
guide the eye since values of x are only generated at integer values of n.
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onto the stable equilibrium point of the logistic differential equation. However, for h > 2, we
see periodic solutions, and eventually solutions which look chaotic. Thus, numerical meth-
ods can produce results which aren’t even qualitatively correct. It is therefore a good idea to
verify integration results carefully, varying the step size and, if possible, changing methods.

Maps don’t just turn up in the integration of differential equations. Consider for instance the
problem of solving the algebraic equation f (x) = 0 for x. One common way to do this is to use
Newton’s method. Expand f (x) in a Taylor series near xn:

f (x) = f (xn)+(x− xn) f ′(xn)+ . . .

Assuming that the first two terms are a reasonable approximation to the function and setting this
expression to zero, we get

xn+1 ≈ xn −
f (xn)

f ′(xn)
.

We label the solution of the truncated equation xn+1 in recognition of the fact that we won’t get
the exact answer in one step, so we’ll have to iterate this procedure many times to get the correct
answer, if this is going to work at all. When it doesn’t work, Newton’s method often generates
interesting dynamics. In fact, a lot of the early work on fractals came from a study of Newton’s
method in the complex plane.

2 Solution maps of differential equations

It sometimes occurs that we have a differential equation for a system, but are only interested in the
behavior at fixed time intervals. For instance, the logistic differential equation is sometimes used
to model population growth, but we might only have census data at intervals of five or ten years. It
then makes little sense to look at the whole continuous solution.

Suppose for instance that we want solutions of the logistic differential equation (not solutions
of some numerical approximation like the Euler method iterates) at fixed intervals T . The solution
of this differential equation is

> dsolve({diff(x(t),t)=x(t)*(1-x(t)),x(0)=x0},x(t));

x(t) =
1

1−
e(−t) (−1+ x0)

x0

or

x(t) =
x0

x0 − e−t(x0 −1)
. (2)

∴ e−t =
x0(x(t)−1)

x(t)(x0−1)
, (3)

and x(t +T ) =
x0

x0 − e−(t+T )(x0 −1)
. (4)
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If we substitute for the exponential in equation 4 using equation 3 we get, after a little rearranging,

x(t +T ) =
x(t)

x(t)− e−T x0 (x(t)−1)
. (5)

This last equation is a solution map. It lets us calculate x(t + T ) knowing only x(t) and some
parameters.

Unlike equation 1 which gives approximations to the solution of the logistic differential equa-
tion at fixed intervals h, equation 5 is exact. We were able to obtain this equation because we were
able to solve the differential equation. In general of course, we can’t do that, but we can still obtain
numerical representations of the solution map by sampling the numerical solution (obtained with
a good numerical method, of course) at fixed time intervals and plotting x(t + T ) vs x(t). This is
sometimes called a Ruelle plot.

3 Poincaré maps of systems with periodic nonautonomous terms

The solution maps and Ruelle plots described above are clearly related to the Poincaré sections
described in the last lecture for systems with periodic driving terms. To go from a Poincaré section
to a Poincaré map, we need only mention that, in a deterministic dynamical system, there always
has to be some rule (even if we don’t know what it is) that can be applied to calculate the next
intersection of a trajectory with the surface of section given the last intersection. For this reason,
Poincaré maps are often called next-return maps. Formally, let {z1,z2,z3, . . .} be the set of in-
tersections of a trajectory with the surface of section. The Poincaré map is a relation P such that
P (zn) = zn+1.

In some very simple cases, Poincaré maps can be computed analytically, but this isn’t usu-
ally the case. Instead, we calculate the Poincaré map numerically. In principle, if we have a
d-dimensional state space (and so a d + 1-dimensional phase space in a nonautonomous system),
then the Poincaré map is a map from R

d into R
d , which is hard to picture for any d > 1. However,

it is often sufficient to use just one variable, i.e. to plot zi(t +T ) vs zi(t).

Example 3.1 We return to the driven Brusselator which we studied recently:

ẋ = a0 +αsin(2πt/T)−bx+ x2y− x,

ẏ = bx− x2y.

Suppose that we want to look at the Poincaré map using xpp. We use the xpp input file which
recast the equations as follows:

ẋ = a0 +αsin(2πθ/T )−bx+ x2y− x,

ẏ = bx− x2y,

θ̇ = 1.

We set up xpp with a periodic phase space in θ of period T . We also set up a Poincaré
section at some reasonable value of θ ∈ [0,T ) and then run a trajectory with a long transient.
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To set up the Ruelle plot, we start by doing something that doesn’t on the face of it make
much sense: We click on Viewaxes→2D and then tell xpp to plot y on both axes. Having
done this, click on nUmerics→rUelle plot. Set the x-axis shift to 1, and leave the
other two shifts at zero. This plots yn−1 on the x axis, and yn on the y axis. Finally, hit
Window/zoom→Fit to see the plot.

Fig. 2 shows two examples of Poincaré maps for the driven Brusselator. Panel (a) shows a
case where we previously found quasiperiodic behavior. You will note that the Poincaré map
is, like the section itself, the image of a closed curve. On the other hand, we get a different
kind of figure in panel (b), at parameter values which we previously identified as being
chaotic. The curve isn’t continuous, and it certainly isn’t closed. Note that the shape of this
curve is roughly parabolic, just like the logistic map (equation 1). This isn’t a coincidence,
as we will see later.

The fact that the chaotic map of Fig. 2(b) is single-valued means that we can actually use it to
predict the next value of y given the last value of y at the section. For instance, if yn−1 = 2.2,
yn = 3.15 (roughly). This means that we can compute the sequence of y’s at the Poincaré
section from this map. There’s just one problem: If you try to do this, you will find that small
errors in yn−1 for values near 3.2 produce large errors in yn. In other words, the Poincaré
map displays sensitive dependence on initial conditions and is chaotic.

Finally note that the reason we picked y rather than x to construct the Poincaré map is that
the plot of xn vs xn−1 isn’t as obviously informative. Again, there’s no guarantee that we will
get a sensible map from one variable. It was just luck that y gave us a nice, single-valued
map in the chaotic regime.

4 Poincaré sections and maps in autonomous systems

The concept of a Poincaré section or map is also useful in autonomous systems with some type
of cyclic attractor. If one of the variables, say x, passes repeatedly through some particular level,
we can define a Poincaré section by collecting values of the other variables every time x passes
through the selected level in a particular direction, say when x is increasing. Figure 3 illustrates
this procedure.

As an illustration, we return to the autocatalator, last discussed in our lectures on bifurcation
theory. The equations of motion were

ȧ = µ(κ+ c)−ab2−a,

ḃ =
1
σ

(

ab2 +a−b
)

,

ċ =
1
δ
(b− c).

Suppose that we’re interested in studying the chaotic regime in this system. Figure 4 shows a
projection of the attractor in the chaotic regime for this system. Note that there is hole in the middle
of the attractor. We imagine a half-plane of constant b starting inside this hole which intersects the
attractor to the right (going toward larger values of a). We can for instance take our section at
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Figure 2: Poincaré maps for the driven Brusselator at parameter values a0 = 0.4, b = 1.2, T = 7.8,
and (a) α = 0.008 or (b) α = 0.05.
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Figure 3: Computation of the Poincaré section of a system with a cyclic attractor. We pick some
particular level of one of the variables, in this case x, and save the values of the other variables
(e.g. y in the illustration) when x passes through the selected level in a particular direction. In this
case, we decided to collect values of the other variables when x increases while passing through
the section, shown as a dashed line.
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Figure 4: Strange attractor of the autocatalator at µ = 0.154, κ = 65, δ = 0.02 and σ = 0.005.
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Figure 5: Poincaré section for b increasing through the value 12 in the autocatalator at the param-
eters of Fig. 4.

logb = 2.5, which corresponds to b = e2.5 ≈ 12. We choose to cut to the right because there is a
larger dispersion of values of a in this direction than in the other. This usually gives better Poincaré
maps, although as in most other things in nonlinear dynamics, it’s often necessary to experiment
to get the right cut. We now need to know whether b increases or decreases in this part of the
attractor. If a is large then, from the differential equation, ḃ > 0.

Having gathered all this intelligence, we’re ready to go to xpp. We run the system for a little
while, discarding a transient to make sure that we are on the attractor. We then set up a Poincaré
section at b = 12, setting the Direction in the appropriate dialog box to 1, which indicates an
increasing value of b. If we run the model again, we get the image shown in Fig. 5. We can
compute the Poincaré map using xpp’s Ruelle plot function. I decided to plot an vs an−1, but c
would have done just as nicely. The result appears in Fig. 6. The map isn’t single-valued between
an−1 = 0.3 and 0.4 (roughly), but it is pretty close to just being a simple curve. In fact, the map is
pretty close to being parabolic from an−1 = 0.15 to 0.3 or so. This again suggests that we could
learn something about this system from studying analytic maps which have similar shapes.

Finally note that Poincaré sections don’t have to be orthogonal to a coordinate axis and that it is
sometimes convenient to use a surface of section which has some other orientation in phase space.

5 Next-amplitude maps

In some cases, we get a nicer looking map is we use a slightly different construction. Suppose
that instead of collecting data on a surface of section, we collect data when a variable x reaches a
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Figure 6: Poincaré map corresponding to the Poincaré section in Fig. 5.

maximum (or a minimum, for that matter). If we then plot the next maximum vs the last, we have
next-amplitude map.

The next-amplitude map has some practical applications, but is perhaps most famous because
it was one of the devices used by Edward Lorenz in his famous study of the attractor which bears
his name. We retrace Lorenz’s steps here.

The Lorenz equations2 are

dx
dt

= σ(y− x),

dy
dt

= x(r− z)− y,

dz
dt

= xy−bz.

These equations are a radical simplication of equations describing convection in a fluid heated
from below. Integrating these equations at appropriate parameter values gives the famous Lorenz
“butterfly” attractor shown in Fig. 7(a).

Since the chaotic solution shown in Fig. 7 was generated by deterministic differential equations,
Lorenz thought there should be some regular trends within the data. For some reason, his attention
fixed itself on the variable z. He intuited by looking at data such as those shown in Fig. 7(b)
that the maximum in z might be a good predictor of what would happen on the next loop around
the attractor. Based on this intuition, he constructed the first next-amplitude map, plotting one

2Lorenz himself modestly calls this the “three-variable model”.
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Figure 7: Lorenz attractor (a) and time series of z vs t for b = 2.67, σ = 10 and r = 28.

maximum in z against the next. We can repeat this calculation in xpp by setting up a Poincaré
section, but this time choosing the Max/min option. We set the Variable to be z. The Section
value isn’t used in searching for maxima, while a Direction of 1 indicates that we want maxima
rather than minima (−1) or both (0). If we then set up a Ruelle plot in the usual way and plot zmax,n

vs zmax,n−1, we get the next-amplitude map shown in Fig. 8. In this case, the points don’t exactly
lie on a curve. They never do, but in this case it’s obvious that the curves which make up our map
have some thickness. However, we can again conclude that to a good approximation, the solutions
of these differential equations define a map, this time roughly tent-shaped.

6 Concluding comments

Whether we are interested in the “dynamics of numerics”, as the study of the dynamics induced
by numerical methods is called, or in learning something about the chaotic solutions of certain
differential equations, students of differential equations frequently end up studying maps. Maps
also turn up directly as models of certain natural phenomena, particularly in population biology. In
many ways, this is a fortunate thing because maps are easier to analyze than differential equations,
as we will see in our next lecture.
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Figure 8: Lorenz next-amplitude map for the attractor shown in Fig. 7.
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