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In this lecture, we will learn how to do a bifurcation analysis with the computer program
AUTO. AUTO is built into xppaut , which is where theaut part of the name comes from, so we
can just continue to use the tool we started to learn in the last lecture.

We will proceed by example, working with the autocatalator model we started to study last
time. Because AUTO is a tricky piece of software, the instructions given in this set of notes will
be much more detailed regarding the operation of the software than would otherwise be the case.
Recall that thexpp input file is

# Autocatalator.ode

a’ = mu*(kappa+c) - a*bˆ2 - a
b’ = (a*bˆ2 + a - b)/sigma
c’ = (b-c)/delta

param mu=0.1, kappa=65, delta=2e-2, sigma=5e-3

# The variables range over several orders of magnitude, so
# it’s convenient to plot log(a), log(b) and log(c)
aux la = log(a)
aux lb = log(b)
aux lc = log(c)

# In order to avoid problems with the logs,
# start from a point other than (0,0,0).
a(0) = 1
b(0) = 1
c(0) = 1

# This system is stiff, so we need
# an appropriate integrator.
@ METHOD=stiff

# The time scale of the oscillations is really fast,
# and the spikes are really sharp and high, so we need
# to adjust both the integration step size and
# the maximum variable value allowed.
@ DT=1e-4, BOUNDS=1e4
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@ MAXSTOR=1000000

done

In order to use AUTO, we have to start with a known solution, preferably an equilibrium point.
We know from our previous study that there is a stable focus atµ � 0�015. We setµ to this value,
and then get a trajectory. We then hitInitialconds �Last to make sure that we have gotten rid
of the transient. If you do aWindow/zoom �Fit operation, you should see a perfectly flat line.
Better yet, if you look in the data viewer, the values should be perfectly constant. Now click on
File �Auto . This will open up the AUTO window.

AUTO needs to be set up. We need to tell it what parameter(s) wewill vary, what we will
plot, and so on. Start by clicking onAxes�Hi-lo . This will set up AUTO to plot local minima
and maxima of one of the components of the computed solutionsas a function of a parameter.
A simple limit cycle will, for instance, appear as a pair of points on our diagram. We could in
principle choose any of the variables of the model to plot. I choosea.1 Similarly, we could
obtain bifurcation diagrams as a function of any of the parameters, but it makes sense to build on
our earlier work and to varyµ. We need to set the scale of the bifurcation diagram. We found
interesting behavior whenµ was varied from 0.015 to 0.154. We didn’t really look at what happens
after that. It would therefore make sense to varyµ from our starting point at least up to 0.2. If we
look at the graphs we generated last time, we note that loga was never larger than 0. Thus, the
maximum ina itself would be less than 1. In the kind bifurcation diagram we’re going to draw
now, the variable goes on theY axis and the parameter on theX axis. We therefore set up the axes
as follows:

If all went well, the axis labels and limits in the AUTO windowshould reflect the values you just
typed in.

We now need to set up the bifurcation diagram computation (asopposed to just the plotting
axes). To do this, click onNumerics and set the following parameters:

1Note that it’s tempting to use the auxiliary variables representing loga, logb or logc since, as we noted last time,
the variables range over several orders of magnitude. Unfortunately, AUTO produces erratic results with auxiliary
variables, so it’s best to stick with the model’s basic variables.
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Par Max: 0.2
Ds: 0.002
Dsmin: 1e-5
Dsmax: 0.02

Par Max has the obvious meaning.Ds is a suggestion to AUTO of an appropriate amount by which
to step the parameter, in our caseµ. Sinceµ goes up to 0.2, we’re using a value ofDs which will
result in about a hundred points being used. Note that this isonly a suggestion. AUTO actually
adapts the step size as it goes, within the limits set byDsmin andDsmax. Again, given the range
we want to cover, the indicated values are reasonable.

We’re ready to go! Click onRun�Steady state . AUTO will start at your steady state, and
attempt to follow what happens to this steady state asµ increases from its initial value (0.015) to
the maximum value we set (0.2). AUTO generates two kinds of output: The computed points of the
bifurcation diagram are displayed in the AUTO window, and they are printed out to the terminal.
The latter looks like this:

BR PT TY LAB PAR(1) L2-NORM U(1) U(2) U(3)
1 1 EP 1 1.500000E-02 1.486463E+00 4.999740E-01 9.898477E- 01 9.898477E-01
1 5 HB 2 1.531126E-02 1.514276E+00 4.999716E-01 1.010707E+ 00 1.010707E+00
1 50 3 2.465130E-02 2.365388E+00 4.441410E-01 1.642832E+0 0 1.642832E+00
1 100 4 3.485542E-02 3.339280E+00 3.605654E-01 2.347423E+ 00 2.347423E+00
1 150 5 4.486207E-02 4.327713E+00 2.958103E-01 3.052998E+ 00 3.052998E+00
1 200 EP 6 5.467292E-02 5.322212E+00 2.484300E-01 3.759270 E+00 3.759270E+00

The columns of output have the following meanings:

BR Branch of the bifurcation diagram
PT Point number
TY Type of point
LAB Label used to number key points on the bifurcation diagram
PAR(1) Value of the bifurcation parameter
L2-NORM L2 norm of the solution
U(1) , U(2) , etc. Values of the variables

We’ll look at some of these columns in detail later. For now, let’s concentrate on just two of them,
namelyTY andPAR(1) . We see three types of points in this diagram:

� Most of the points don’t have a type. These are “ordinary” points where the program is
just continuing a branch of solutions, in this case the steady state. AUTO prints out points
every so often, whether they’re special or not, with the interval controlled by the numerical
parameterNpr .

� EP is an end point, i.e. a place where we either started or stopped calculating the bifurcation
diagram.

� HB is a Hopf bifurcation point.2

2I should call this an Andronov-Hopf bifurcation point, but then AUTO’s abbreviation doesn’t make sense, so in
this document I will revert to the older usage.
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In this particular diagram, we see that a Hopf bifurcation occurs atµ� 1�531126�10�2 (the value
of the bifurcation parameterPAR(1) at theHB point). There’s a problem though: We wanted to
compute our bifurcation diagram out toµ� 0�2, but the program stopped atµ� 5�467292�10�2.
It did this because AUTO will only compute a fixed number of points before it stops. It labeled
the last pointEP to indicate a normal stopping condition. We’ll just have to adjust the maximum
number of points and try again. Note that if there had been an error, the last point would have had
typeMX.

You have to be very careful when you restart AUTO to first resetthe program to its original
state. You do this by carrying out the following sequence of steps:

1. Click onGrab . You can move between the points using your keyboard’s arrowkeys. Select
the firstEP and hit the return key. This will reset AUTO’s internal stateto what it was when
you started. If you get into grab mode and decide youdon’t want to grab any points, hitting
the escape key will get you out without changing anything.

2. Click onFile �Reset diagram . This deletes some files which AUTO uses to keep track
of what it’s doing.

3. Click onClear to erase the contents of the AUTO window.

The first two steps are particularly important and must be performedin that order. If you mess up
at this point, it will be difficult to recover, and you will have to quit AUTO and start over.

Now click on theNumerics button and increaseNmax to a large value, say 5000. (Note that
the value ofNmaxwhen you first entered this window was 200, which was the pointnumber of the
secondEP.) If you click onRun, AUTO will now compute the complete bifurcation diagram. The
result will look at least roughly like this:

If we look at the AUTO text output, we now see two Hopf bifurcation points, namely the one at
µ� 1�531126�10�2 we had seen earlier, as well as a secondHBpoint atµ� 1�744357�10�1. In
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between these two points, the steady state is unstable. Ranges where the steady state is stable are
represented by heavy lines in the AUTO graphical window, while ranges in which the steady state
is unstable are shown as thin lines.

The note above that you can make mistakes from which it’s hardto recover in AUTO should
have sounded ominous to you. That being the case, it’s a good idea to save your diagram at this
point. That way, if some error occurs later, you can get back to where you were just by loading
your diagram back in. Just click onFile �Save diagram . The default file name should be fine,
unless you want to compute several diagrams at different parameter values.

Our next task will be to see how the periodic orbits associated with the Hopf points behave.
To do this, click onGrab , go the firstHB point, and hit return. Then clickRun�Periodic . This
time, AUTO finds a lot of interesting points in a very small range of parameters (betweenµ �

1�531113�10�2 and 1�539651�10�2) before quitting. When it does quit, it generates the dreaded
MXpoint type, which indicates that it ran into trouble of some sort. Before we deal with this, let’s
look at the new point types generated by AUTO:

� LP is a limit point. At a limit point, a branch of solutions (in this case, limit cycles) turns
around. (Imagine following the upper branch of a curve that looks like�. When you get all
the way to the right following this curve, you turn around andcome back along the lower
branch.) These points are sometimes interesting, but they’re not of primary interest.

� PD is a period-doubling bifurcation point.

� BP is a branch point, which is just a fancy way of saying that a bifurcation occurs here, but
not one of the standard types of which AUTO happens to know thename.

In our previous study, we had missed the fact that there were bifurcations other than the Hopf
bifurcation for values ofµ close to this bifurcation point. This is one of the reasons that automated
bifurcation analyses are useful: You can catch stuff this way you would otherwise have missed.

At this point, it’s a good idea to reevaluate our strategy. Wewere trying to get a bifurcation
diagram that covers the very large rangeµ � �

0�015�0�2�. We now find that there’s a lot of action
nearµ � 0�015. It might make sense at this point to start over, looking at a much smaller range of
µ this time. We can cover the rest of the bifurcation diagram later.

Here’s my strategy: I’m going to grab the first EP (the one we started from atµ� 0�015). Then
I’ll reset the diagram and set up AUTO to study, say, the interval µ � �

0�015�0�05�. I’ll also have
to worry about the fact that my last attempt bombed (error code MX). This happened while AUTO
was following a branch of periodic solutions. Bard Ermentrout’s3 advice in this case is to make
the numerical parameterNtst larger. In AUTO,Ntst controls the number of mesh points used to
represent a periodic orbit. Making it bigger yields a more accurate representation of the orbit at
the cost of slowing the computation. The changes to theAxes dialog are obvious. The following
adjustments are made to theNumerics dialog:

Par Max: 0.05
Ntst: 40

3Ermentrout is the author ofxppaut .
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We run AUTO to get the steady-state curve in our range of interest (Run�Steady state ). We
then grab theHBpoint and click onRun�Periodic . AUTO generates the following output:

BR PT TY LAB PAR(1) L2-NORM MAX U(1) MAX U(2) MAX U(3) PERIOD
2 3 LP 5 1.531113E-02 1.514264E+00 4.999915E-01 1.011098E+ 00 1.011069E+00 3.145671E-01
2 6 LP 6 1.539625E-02 1.590267E+00 5.050783E-01 1.774331E+ 00 1.724269E+00 6.136177E-01
2 17 BP 7 1.539626E-02 1.648621E+00 5.050643E-01 2.241218E +00 2.144174E+00 7.664522E-01
2 20 BP 8 1.539626E-02 1.669440E+00 5.050814E-01 2.409316E +00 2.291245E+00 8.084619E-01
2 52 LP 9 1.539626E-02 1.953158E+00 5.050809E-01 5.374062E +00 4.477164E+00 1.111194E+00
2 61 LP 10 1.539626E-02 2.042319E+00 5.050543E-01 6.711408 E+00 5.237696E+00 1.155063E+00
2 100 11 1.539626E-02 2.459837E+00 5.050801E-01 1.643857E +01 8.501221E+00 1.236869E+00
2 137 LP 12 1.539626E-02 2.727221E+00 5.049509E-01 2.46086 6E+01 9.924140E+00 1.239484E+00
2 200 13 1.539626E-02 3.480340E+00 5.050394E-01 4.611810E +01 1.253354E+01 1.202768E+00
2 208 BP 14 1.539627E-02 3.601186E+00 5.050814E-01 4.91462 3E+01 1.289073E+01 1.194435E+00
2 300 15 1.570385E-02 5.183583E+00 5.062357E-01 7.711970E +01 1.630640E+01 9.742975E-01
2 400 16 1.917319E-02 6.723634E+00 5.177495E-01 8.478699E +01 1.733763E+01 6.614443E-01
2 500 17 2.414264E-02 8.247445E+00 5.312346E-01 8.990671E +01 1.807078E+01 4.827086E-01
2 600 18 3.002349E-02 9.777387E+00 5.448768E-01 9.433547E +01 1.874451E+01 3.729731E-01
2 700 19 3.664476E-02 1.131635E+01 5.584536E-01 9.839583E +01 1.939278E+01 3.004697E-01
2 800 20 4.391179E-02 1.286477E+01 5.718912E-01 1.022382E +02 2.001246E+01 2.498354E-01
2 879 EP 21 5.006477E-02 1.409454E+01 5.824337E-01 1.05139 7E+02 2.051262E+01 2.198129E-01

Note the nearly vertical section of the branch of periodic solutions, and the corresponding large
number of points calculated nearµ � 1�539626�10�2 (points 6 to 208). Near this value ofµ,
the size of the limit cycle is increasing very rapidly and AUTO must do a lot of work to maintain
accuracy. AUTO will sometimes get stuck in regions like thisone. The best thing to do then is try
to step over the problem by using larger values ofDs andDsmin . Note also that the line of maxima
which runs along the top of the page has counterpart minima along the bottom. They are so close
to zero that they disappear in this plot. However, if you manually set a small negative value for
Ymin in Axes�Hi-lo , these minima will reappear.

If we try to grab the first branch point, we immediately get theMXerror status. This indicates
that there probably isn’t really a branch point here. AUTO was wrong. Following the second
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branch point just regenerates points we already have in our diagram. We therefore don’t have to
worry about this point. The same is true of the third branch point.

Since there wasn’t any excitement at smallµ after all, we will continue to higher values of the
parameter. SetPar max back to 0.2 in theNumerics dialog. Grab the rightmostEPon the periodic
branch we have computed. Click onRun�Extend . By a similar method, extend the steady-state
branch. Our diagram now has the following appearance:

If we zoom in on parts of this diagram, we see that the periodicsolutions are sometimes represented
by solid dots, sometimes by open circles. The circles represent unstable periodic orbits, while the
dots represent stable orbits.

Several period doubling points show up in the output. Let’s follow a few of them. There’s a
PDpoint where the limit cycle becomes unstable atµ � 1�429566�10�1. This is a likely source
of a stable period-2 orbit, so let’s continue this one. Grab the point and click onRun�Doubling .
Here’s a closeup of the computed piece of the doubled orbit:
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We can clearly see the stable period-2 cycle emerging from the point where the period-1 cycle
becomes unstable.

On the practical side, we’re clearly numbering far too many points, so we’ll increaseNpr for
the rest of this session. We’ll also increaseNmax, and then extend this branch of solutions. You can
click on Abort to stop AUTO if it seems to have filled in a part of the diagram. We again discover
a period-doubling bifurcation atµ� 1�526725�10�1 which we can continue. We can repeat this
procedure until we don’t seem to be getting any more detail. Here’s a piece of our diagram showing
the period-2, period-4 and period-8 orbits:

The period-8 orbit is so close to the period-4 that we can’t actually see it in this picture.
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To complete the diagram, we might as well track the steady state back toµ� 0. To do this, we
grab the firstEP, and then set anegativevalue of the numeric parameterDs. After a final manual
scaling of the axes, we get

This is an essentially complete diagram since the higher period solutions will be invisible on the
scale of this graph.

There are many other types of bifurcations than the simple Andronov-Hopf and period-doubling
types seen here. AUTO can also detecttorus bifurcations (TR). A torus bifurcation is in some ways
analogous to an Andronov-Hopf bifurcation, except that it’s a limit cycle that loses stability, this
time to a solution which oscillates around the unstable limit cycle. The result is a trajectory which
can be thought of as moving on the surface of a torus (a doughnut).
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