
Reaction-diffusion equations

Marc R. Roussel

November 29, 2005

1 Introduction

1.1 The rate of diffusion

In chemical systems which are not well mixed, we have to take into account the fact that chemicals
move through space due to diffusion. We begin these notes with a short account of the laws of
diffusion.

The fundamental quantity in the study of diffusion is the flux, i.e. the amount of a chemical
which passes near a point in space per unit area per unit time. The SI unit of flux would therefore be
molm−2s−1. Flux is a vector: We can talk about fluxes in each of the Cartesian directions in space.
The best way to think about flux is to imagine a small surface of area A oriented perpendicularly
to one of the coordinate axes, say the x axis. Now examine figure 1. The number of moles of
the chemical whose flux along the x axis is Jx entering the volume between the two surfaces per
unit time is Jx(x)A, while the number of moles leaving this volume is Jx(x + ∆x)A. The change
in the number of moles per unit time is therefore A [Jx(x+∆x)− Jx(x)]. To get the change in the
concentration, we divide the change in the number of moles by the volume, which is just A∆x:

∂c
∂t

=
Jx(x+∆x)− Jx(x)

∆x
= −Jx(x)− Jx(x+∆x)

∆x
.

If we now let ∆x → 0, we get
∂c
∂t

= −∂Jx

∂x
, (1a)

or, in three dimensions,
∂c
∂t

= −∇J, (1b)

where
(

∂
∂x

,
∂
∂y

,
∂
∂z

)

is the usual vector differential operator.
Equations 1 are general equations for the rate of transport of a chemical through space which

hold regardless of the nature of the flux. We will use these equations for diffusive fluxes, but we
could equally well use them to describe systems in which there is a flux due to fluid motion (e.g. a
current in a river). We just need an appropriate expression for the flux.

1



∆x+x

Jx Jx

A

x

( )(x) +x ∆x

Figure 1: A small volume of space bounded by two surfaces of area A each perpendicular to the x
axis and separated by a distance ∆x.

What can we take to be an appropriate expression for the diffusive flux? This is actually a
surprisingly complicated question. However, we can give a simple answer which is good enough
for most purposes. Diffusion is, at its core, a simple effect: Suppose that there is more of our
chemical on the left-hand side of our imaginary surface than there is on the right. Then, random
thermal motion of the particles in the system should result in a net left-to-right flux through the
surface. Intermolecular forces may prevent this simple picture from being exactly correct, but in a
dilute solution where these forces are unimportant, we expect the flux to oppose the concentration
gradient. In other words,

Jx = −Dx(c)
∂c
∂x

,

where Dx(c) is a nonnegative functional1 of its argument known as a diffusion coefficient. This
equation is a form of Fick’s first law of diffusion. If Dx depends only weakly on c near the
conditions of interest, we can treat Dx as a constant,2 say D0

x . Furthermore, ordinary solutions
and gases are isotropic (every direction in space is the same) so that there is just one diffusion
coefficient D = D0

x = D0
y = D0

z . When these approximations are valid, we get

Jx = −D
∂c
∂x

,

or
J = −D∇c.

1A functional is a mapping of functions onto numbers (e.g. the real numbers. By saying that Dx is a functional of
c, we are saying that this quantity could in principle depend on c, its derivatives, etc.

2If Dx were an ordinary function of c, we would take a Taylor expansion and neglect the higher-order terms.
However, since there isn’t a straightforward way to define the derivative of a functional with respect to a function, this
hand-waving argument will have to do.

2



If we combine these equations with equations 1, we get Fick’s second law:

∂c
∂t

= D
∂2c
∂x2

in one spatial dimension, or
∂c
∂t

= D∇2c

in higher-dimensional spaces. Surprisingly given the number of assumptions and approximations
made, Fick’s second law does a very reasonable job of representing diffusion in many situations.
This will be the starting point for today’s discussion, although we should be aware that everything
after equations 1 is a hypothesis to be validated for the system under study.

1.2 Reaction-diffusion equations

What happens if we have reactions and diffusion? It turns out that the net effect of the two pro-
cesses is just the sum of the individual rates of change. Thus, if a reaction or set of reactions leads
to reaction rate terms R, then

∂c
∂t

= D∇2c+R.

For obvious reasons, this is called a reaction-diffusion equation. Reaction-diffusion equations
are members of a more general class known as partial differential equations (PDEs), so called
because they involve the partial derivatives of functions of many variables. In the case of a reaction-
diffusion equation, c depends on t and on the spatial variables.

To fully specify a reaction-diffusion problem, we need the differential equations, some initial
conditions, and boundary conditions. The initial conditions will be initial values of the concen-
trations over the domain of the problem. The boundary conditions are a new element: In general,
there will be special conditions at the boundary of the domain such that the differential equation
doesn’t apply there. For instance, in chemical systems, the boundary usually represents the walls
of a container. These walls are impermeable to the chemicals, so we need a condition which says
that the chemicals can’t leak through these walls. Such boundary conditions are called no-flux
boundary conditions. Mathematically, the no-flux condition is

J ·n = 0,

where n is a vector normal to the boundary.
We will shortly be doing some analysis with a reaction-diffusion system, but first it’s useful

to learn something about the simulation of these systems. We will limit our discussion to one-
dimensional systems, although it’s not all that hard to move up to higher-dimensional systems.
The simplest way to integrate reaction-diffusion equations is to use the finite-difference method.
In this method, we store concentrations at (say) N + 1 mesh points spaced by ∆x and numbered
0 to N, and estimate the second derivative of the concentration at every point using these values.
The result of carrying out this procedure is a discretization of the equations. The discretization
is a set of ODEs which reduce to the original PDE provided the mesh points are sufficiently close
together.

3



For a general point i (i 6= 0 or N), we have

D
∂2c
∂x2 = D

∂
∂x

(

∂c
∂x

)

.

The partial derivative to the left of point i is approximated by

∂c
∂x

∣

∣

∣

∣

i−1/2
≈ ci − ci−1

∆x
, (2a)

while the partial derivative to the right is

∂c
∂x

∣

∣

∣

∣

i+1/2
≈ ci+1 − ci

∆x
. (2b)

The best way to think about these two quantities is that they are estimates of the spatial derivatives
of c at points midway between two of the mesh points. These are therefore estimates of the deriva-
tives at two points which are themselves spaced by ∆x. The rate of diffusion at point i is therefore
approximately equal to

D
∂2c
∂x2 ≈ D

∆x

(

∂c
∂x

∣

∣

∣

∣

i+1/2
− ∂c

∂x

∣

∣

∣

∣

i−1/2

)

=
D

(∆x)2 (ci+1 −2ci + ci−1) .

Multiplying this expression by the diffusion coefficient D gives the rate of diffusion.
What about the boundaries? Suppose that we have no-flux boundaries. Then, we can use

equation 2b to estimate the flux on the right of point 0 (by multiplying this expression by −D), but
the flux to the left is zero. Using the same reasoning as above, we get

− ∂J
∂x

∣

∣

∣

∣

0
≈− 1

∆x

(

J1/2 − J−1/2
)

= − 1
∆x

(

−D
c1 − c0

∆x
−0

)

=
D

(∆x)2 (c1 − c0) .

Similarly, at point N,

− ∂J
∂x

∣

∣

∣

∣

N
≈− 1

∆x

(

JN+1/2 − JN−1/2
)

= − 1
∆x

(

0− (−D)
cN − cN−1

∆x

)

=
D

(∆x)2 (cN−1 − cN) .

Example 1.1 As mentioned earlier, the logistic differential equation is used extensively in popu-
lation biology to model populations whose growth is limited by environmental factors. In
fully dimensional form, this equation is

dA
dT

= rA(1−A/K),

where A is the population density, r is the specific growth rate (analogous to a first-order rate
constant) at low population densities, and K is the carrying capacity of the environment, i.e.
the maximum population density which can be supported. Of course, living organisms do

4



migrate, and this process is often modeled by diffusion. Thus we get the logistic reaction-
diffusion equation

∂A
∂T

= D
∂2A
∂X2 + rA(1−A/K).

In this equation X represents the spatial coordinate. Obviously, in a realistic model, we
would probably consider a two-dimensional domain.

To facilitate our analysis, we will put this equation in dimensionless form. Start with A and
T :

a = A/K,

and t = rT.

∴
∂a
∂t

=
D
r

∂2a
∂X2 +a(1−a).

From the definition of the diffusion coefficient, it’s not too hard to see that it has units of
m2/s. D/r therefore has units of m2, and the square root of this quantity has units of m. This
provides us with a transformation for the spatial variable X :

x = X
√

r/D. (3)

∴

∂a
∂t

=
∂2a
∂x2 +a(1−a).

The diffusion coefficient just disappears from our equation. It turns out that we can always
do this: By choosing an appropriate scaling for the spatial variables, one of the diffusion
coefficients (in a system with multiple chemical species) can be set to 1.

Suppose that we want to use this equation to model the spread of a population on an island
to which it has been introduced. A small colony is established at one end of the island at
t = 0. We could represent that by a simple square pulse:

a(x,0) =

{

1 for x < ρ,
0 for x ≥ ρ.

If our creatures can’t swim, then no-flux boundaries are appropriate.

Let’s say, for the sake of argument, that the island is 10 km long, that r = 5y−1, and that
D = 5km2/y, values which are reasonable for small mammals, then the length of the island
in our rescaled variables is, using equation 3,

L = (10km)
√

(5y−1)/(5km2/y) = 10.

If we use N = 100 mesh points, then ∆x = 10/100 = 0.1.

Xpp can be used to integrate the discretized ODEs, using a few facilities which have been
built into it for the purpose. The following xpp input file illustrates the relevant techniques:

5



# Logistic reaction-diffusion equation with no-flux boundaries
da0/dt = (a1-a0)/deltax2 + a0*(1-a0)
da[1..99]/dt = (a[j+1]-2*a[j]+a[j-1])/deltax2 + a[j]*(1-a[j])
da100/dt = (a99-a100)/deltax2 + a100*(1-a100)

param deltax=0.1
!deltax2=deltaxˆ2

a[0..10](0) = 1
a[11..100](0) = 0

@ MAXSTOR=1000000, DT=0.005

done

The differential equations are written using pseudo-arrays. These are much more limited
than the arrays in real programming languages, but they are sufficient to do what we need
to do here. To use pseudo-arrays, you need to define all the variables in the array (in this
case, the ai’s for which we have a set of differential equations) in numerical order. In other
words, it would not have done to write the differential equation for a0 at the end, nor would
it be OK to insert other differential equations between those for the ai’s. Note that the right-
hand side of the general differential equation uses the index j to designate members of the
pseudo-array. You must use this letter for your array indices in differential equations.

The rest of the file is most fairly obvious, including the specification of the initial condition
which also uses the pseudo-array notation. In order to avoid computing (∆x)2 every time it
is used, we define a derived parameter deltax2 which has this value. Note the syntax here.
This tells xpp that if we change deltax, we want deltax2 to be recomputed according to
this formula.

If we now run xpp, we can of course plot each of the ai’s vs t, but what we really want to
do is to see how the whole distribution evolves as a function of time. To do this, click on
Viewaxes→Array, and fill in the values in the dialog box which appears as follows:

6



Column 1 is the first of your variables to plot. Ncols is the total number of variables. Row 1
is the row of data (from the data browser) at which to start. Setting this to zero starts at t = 0.
Nrows and RowSkip are set together to determine the number of time points which will be
used to generate the graph. It doesn’t make any sense to use thousands of time points since
most output devices at normal resolutions and graphic sizes won’t use this many points. A
few hundred points will do. In our case, we integrated for the default 20 time units at a time
step of 0.005, so we should have generated 20/0.005 = 4000 data points. (Actually, it’s
4001 if you think about it for a minute, but the difference really doesn’t matter here.) We’ll
therefore set Nrows to 400 and RowSkip to 10, which will plot every tenth row, from zero to
4000. Zmin and Zmax are the minimum and maximum values of our variables. I’m not sure
what Autoplot does, and the xpp documentation seems to be mum on this point. Finally,
Colskip plays a similar role to RowSkip, but for the columns of data, i.e. for the ai’s. The
result is a space-time plot of the solution, with colors indicating the variable values. Figure
2 shows the result.3 Note that you may have to hit the Redraw button in the window which
pops up to see the result.

It is important to learn how to read space-time plots since they are one of the main tools used
to visualize solutions of reaction-diffusion equations. Let us therefore look at the figure carefully.
At t = 0 (the top of the graphic), we placed a high population near x = 0 (to the left). We therefore
see a dark area in the top left corner, with white areas to the right where there are initially no
critters. The population at the point of invasion actually decreases at first, because of diffusion into
the unoccupied interior of the island. We soon have some population right across the island. This
population thereafter continues to grow toward its carrying capacity.

3I printed the figure out in grey scale, using the value −1 for the Render option in the Print dialog box. The boxes
you have to fill in to print out one of these graphs have reasonably obvious meanings, except for Render. In addition
to grey scale, you can choose a red-blue encoding (0) or the red-yellow-green-blue encoding which you see on your
computer screen (1), or another encoding which is similar to 1, except that the top and bottom values map to the same
color. This is useful for plotting periodic quantities.

7



x

t

0

19.95

 0 101

0  1 

Figure 2: Space-time plot of the solution of the logistic reaction-diffusion equation. The details of
the simulation are given in the text. The values on the x axis are actually indices into our pseudo-
array rather than actual values of x. The latter are recovered by multiplying the indices by ∆x.

8



2 Stability analysis of reaction-diffusion equations

As you can probably guess by now, the next step is to develop methods for the stability analysis
of reaction-diffusion equations. It’s much easier to do this by example than to lay out a general
theory, so we’ll go back to our old acquaintance the Brusselator. Let us first recall the analysis
carried out in a previous lecture: In dimensionless form, the Brusselator ODEs are

ẋ = a−bx+ x2y− x,

ẏ = bx− x2y.

This model has a single equilibrium point at (x∗,y∗) = (a,b/a). This equilibrium point undergoes
an Andronov-Hopf bifurcation at b = bAH = a2 +1, with oscillations being observed for b > bAH.

If we want to study the reaction-diffusion version of this model, we just add diffusion terms to
the two equations. We can immediately obtain a dimensionless form by setting one of the diffusion
coefficients to unity:

∂x
∂t

=
∂2x
∂z2 +a−bx+ x2y− x,

∂y
∂t

= D
∂2y
∂z2 +bx− x2y.

Here, z is our spatial variable, while D is the relative diffusion coefficient of Y, i.e. the ratio of DY

to DX . Note that the steady state of the well-mixed model is also a steady state of the reaction-
diffusion model: If (x,y) = (x∗,y∗), then the spatial derivatives of this constant function are zero,
as are the reaction terms, so the time derivatives must be zero too. This solution is called the
homogeneous steady state.4

To linearize these equations, let

x = δx+ x∗ = δx+a,

and y = δy+ y∗ = δy+b/a.

Here, δx and δy are displacements from equilibrium, which now depend both on time and space.
As usual, we will ask what happens when δx and δy are small. Because the above definitions are
linear in δx and δy, we have

∂x
∂t

=
∂(δx)

∂t
,

∂2x
∂z2 =

∂2(δx)
∂z2 , etc.

The linearization of the reaction terms is just J∗ [δx δy]T , where J∗ is the Jacobian evaluated at
the equilibrium point, and the superscripted T represents the transpose operation. Thus we have
the linearized equation

∂
∂t

[

δx
δy

]

= D
∂2

∂z2

[

δx
δy

]

+J∗
[

δx
δy

]

,

4Analyzing the stability of the homogeneous steady state assumes that the boundary conditions are consistent with
this steady state. Otherwise, this is a hollow exercise.

9



where D is the matrix which has the diffusion coefficients on its diagonal, and zeros everywhere
else:

D =

[

1 0
0 D

]

.

Also, the Jacobian for the Brusselator is

J∗ =

[

b−1 a2

−b −a2

]

.

We again want to determine if the steady state is stable against small perturbations, but this time
we want to introduce a spatial aspect. Suppose therefore that our perturbations are inhomogeneous
in space. One convenient form is

[δx δy] = [δx0 δy0]e
λteikz.

The eλt part is easily recognizable from our previous work. The term eikz = cos(kz)+ isin(kz) is
a convenient way to represent a spatial wave. Our question now will be whether or not conditions
can be found under which the steady state is unstable (ℜ(λ) > 0) when a wiggly disturbance is
introduced. Since any disturbance over a finite domain can be synthesized by adding up sine waves,
this will answer the question of whether the steady state is stable against small, but otherwise
arbitrary perturbations.

If we substitute the perturbation into the linearized equation, we get, after cancelling off the
common factors of eλteikz,

λ
[

δx0

δy0

]

= −k2D
[

δx0

δy0

]

+J∗
[

δx0

δy0

]

,

or, after rearranging,
{

λI+ k2D−J∗
}

[

δx0

δy0

]

= 0,

where I is the identity matrix. This is a homogeneous equation in [δx0 δy0] which only has
nontrivial solutions if

∣

∣λI+ k2D−J∗
∣

∣= 0,

where again the bars represent the determinant operation. Note that we haven’t done anything so
far that is specific to the Brusselator, so that this is a general characteristic equation for reaction-
diffusion equations in one spatial dimension. Our task will be to determine whether this character-
istic equation has solutions for which the real part of λ is positive, and if so, under what conditions.
Because of the appearance of the unknown wavenumber k in this equation, this equation has a dif-
ferent solution for every k, so again we are faced with equations where we can’t simply find a finite
number of roots and stop there.

Let us plug in our J∗ and complete the analysis for the Brusselator:
∣

∣

∣

∣

λ+ k2 +1−b −a2

b λ+Dk2 +a2

∣

∣

∣

∣

= 0.

∴ λ2 +λ
[

k2(1+D)+1−b+a2]+Dk4 + k2[D(1−b)+a2]+a2 = 0.

10



This quadratic equation is of the form

λ2 +qλ+ p = 0.

The solutions are

λ =
1
2

{

−q±
√

q2 −4p
}

.

There will be at least one root with a positive real part provided one of the following two conditions
are met:

1. q < 0. If this is the case, then −q is positive, and the root of the quadratic equation which
uses the plus sign certainly has a positive real part, regardless of whether the discriminant of
the equation is positive or negative.

For our characteristic equation, this condition reduces to

b > 1+a2 + k2(1+D) > 1+a2

since k2(1 + D) > 0. To be clear: If b > 1 + a2, then there exist values of k such that the
steady state is unstable. This is just the Andronov-Hopf bifurcation condition, which isn’t
very interesting since we get this instability without the diffusion terms.

2. q > 0 and p < 0. If p < 0, then the discriminant is both positive and greater in magnitude
than |q|. Again, this makes the root with the positive sign positive overall.

For the Brusselator, the condition q > 0 is realized when b < 1+a2. Note that this will take
us out of the regime where we expect to see an Andronov-Hopf bifurcation. The condition
p < 0 is

Dk4 + k2[D(1−b)+a2]+a2 < 0.

Note that the left-hand side of this inequality is a concave parabola in the variable γ = k2:

f (γ) = Dγ2 + γ[D(1−b)+a2]+a2 < 0.

There will be a range of γ (i.e. k2) where this is negative provided the minimum of the
parabola is itself negative. That’s not quite enough though. Since γ = k2, only positive
values of γ are physically significant. Thus we want to know under what conditions f (γ)
is negative for some positive values of γ. Note that f (0) = a2 > 0. This means that, if the
minimum lies in the region γ < 0, the entire range containing negative values also lies in this
range. We must therefore insist that the minimum lie to the right of the axis. Let us find this
minimum:

d f
dγ

= 2Dγ+D(1−b)+a2 = 0.

∴ γ =
1
2

(

b−1−a2/D
)

.

11



Since we want γ at the minimum to be positive, we must insist that b > 1+a2/D.

∴ fmin =
D
4

(

b−1−a2/D
)2

+
1
2

(

b−1−a2/D
)[

D(1−b)+a2]+a2

=
D
4

(

b−1−a2/D
)2 − D

2

(

b−1−a2/D
)2

+a2

= a2 − D
4

(

b−1−a2/D
)2

< 0.

∴ 4a2/D <
(

b−1−a2/D
)2

.

∴ 2a/
√

D < b−1−a2/D.

Note that this last step is only legitimate because we are restricting ourselves to values of b
such that b > 1+a2/D. Continuing, we have

2a/
√

D < b−1−a2/D.

∴ b > 1+
2a√

D
+

a2

D
.

∴ b >

(

1+
a√
D

)2

.

Since we must also have b < 1+a2, this gives the following bifurcation condition:

(

1+
a√
D

)2

< b < 1+a2. (4)

Note that this bifurcation occurs only when the steady state would be stable in the absence
of diffusion. Thus, this is a purely diffusive instability. Moreover, it occurs for a finite
range of wavenumbers k. This instability will therefore form a spatial pattern of some sort
since adding up a bunch of sine waves within a finite range of wavelengths should produce
a nontrivial wave pattern. This is a Turing bifurcation. Technically, a Turing bifurcation
is the destabilization of an other stable steady state by diffusive terms, leading to pattern
formation.

Suppose that D is small. Then
(

1+ a√
D

)2
= 1+ 2a√

D
+ a2

D > 1+a2, and it becomes impossible

to satisfy both parts of condition 4 at the same time. We conclude that D must be sufficiently
large in order to make a Turing bifurcation possible. In other words, Y must diffuse faster
than X in the Brusselator model. How much faster? We want

1+
2a√

D
+

a2

D
< 1+a2.

∴

√
D− 1√

D
>

2
a
.

In two-variable systems, and in the absence of other complications, Turing bifurcations al-
ways require that one of the chemicals diffuse faster than the other. Which chemical has to

12



diffuse faster depends on the signs of the terms in the Jacobian in a way which we won’t go
into here.

Condition 4 isn’t quite enough to guarantee a Turing bifurcation. Waves with wavenum-
bers in the appropriate range have to actually fit within the reaction domain. Moreover, the
boundary conditions may suppress waves with certain wavenumbers. The methods required
to explore these issues aren’t too much more complex than we have seen here, but after a
while algebra gets a little tedious, and we omit this topic. Suffice it to say that it’s easier to
observe Turing bifurcations in large systems where many waves can fit.

13


