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1 Introduction

Today’s notes will deviate somewhat from the main line of lectures to introduce an important class
of dynamical systems which were first studied in mechanics, namely Hamiltonian systems. There
is a large literature on Hamiltonian systems. The intention here is not to comprehensively survey
this literature, which would be quite impossible even if we devoted a whole course to the subject,
but to discuss some of the key ideas underlying the treatment of this class of systems.

We begin with some definitions:

Definition 1 Suppose that H(x,p) is a smooth function of its arguments for x and p ∈ R
n. Then

the dynamical system

ẋi =
∂H
∂pi

, (1a)

ṗi =−
∂H
∂xi

(1b)

(i = 1,2, . . . ,n) is called a Hamiltonian system and H is the Hamiltonian function (or just the
Hamiltonian) of the system. Equations 1 are called Hamilton’s equations.

Definition 2 The number of degrees of freedom of a Hamiltonian system is the number of (xi, pi)
pairs in Hamilton’s equations, i.e. the value of n. The phase space is therefore 2n-dimensional.

In mechanics, the vector x represents the generalized coordinates of the components of the system
(positions, angles, etc.), while p is a set of generalized momenta. There is an elaborate theory
for constructing generalized momenta and Hamiltonians which we won’t go into here. Note that
the generalized momenta are not always ordinary linear momenta (mvi), although that is often the
case.

Note that the Hamiltonian function is a contant of the motion:

Ḣ =
n

∑
i=1

∂H
∂xi

ẋi +
n

∑
i=1

∂H
∂pi

ṗi

=
n

∑
i=1

∂H
∂xi

∂H
∂pi

+
n

∑
i=1

∂H
∂pi

(

−
∂H
∂xi

)

= 0.
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Figure 1: Harmonic oscillator orbits for k = 200N/m, m = 0.1kg, and various values of the total
energy E. Maple code which can be used to draw such a figure is given in Appendix A. (I actually
used gnuplot because I think the output looks a little nicer, but the principle is the same.)
Note that these closed orbits are not limit cycles since different initial conditions (which in general
lead to different values of E) will produce different orbits.

In fact, the Hamiltonian is often just the total energy in mechanical systems, although this isn’t
always the case.

Let us for the moment specialize the discussion to planar systems, i.e. systems for which n = 1.
The fact that H is constant is means that the motion is constrained to the curve H(x, p) = h, where
h is the value of the Hamiltonian function implied by the initial conditions. This curve is of course
just the orbit of the system in phase space. If we change the total energy, we get a different orbit.

Example 1.1 A harmonic oscillator is a mass-spring system with potential energy 1
2 kx2, where x

is the displacement of the spring from equilibrium. For simple systems like this one in which
the potential energy simply depends on the position, the Hamiltonian is just the total energy:

H(x, p) =
1
2

kx2 +
p2

2m
, (2)

where p is the momentum. Because H is a constant, the orbits are just the family of ellipses

1
2

kx2 +
p2

2m
= E.

The value of E is fixed by the initial conditions. Different values of E correspond to ellipses
of different sizes. Figure 1 shows an example.
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If we are interested in the equations of motion, we can recover them from Hamilton’s equa-
tions:

ẋ =
∂H
∂p

= p/m. (3a)

ṗ = −
∂H
∂x

=−kx. (3b)

Since v = p/m, the first equation just says that ẋ is the velocity of the particle. Recall that
F = ṗ. (We usually write this as F = ma in elementary physics courses.) Thus, the second
equation gives us the force law corresponding to the potential energy 1

2kx2, which you may
recognize from your earlier studies of physics.

As you well know from mechanics, mechanical systems are subject to other conservation laws:
momentum, angular momentum, and so on. If we can find enough conservation laws for a system
then, as in the example above, the business of determining the behavior of the system becomes
rather simple. On the other hand, if we have more degrees of freedom than constants, the behavior
can be complex. These issues are discussed briefly in the following sections.

2 Integrable systems

We start with some specialized machinery and definitions pertaining to Hamiltonian systems.

Definition 3 Let H(x,p) and L(x,p) be differentiable functions of their arguments for x and p ∈
R

n. The Poisson bracket of H with L, {H,L}, is defined by

{H,L}=
n

∑
i=1

(

∂H
∂pi

∂L
∂xi
−

∂H
∂xi

∂L
∂pi

)

.

Definition 4 A quantity L is called a first integral of a Hamiltonian system if it is a constant of the
motion, i.e. if L̇ = 0 under the flow implied by Hamilton’s equations.

Note that the Hamiltonian itself is a first integral according to this definition.

Theorem 1 The quantity L is a first integral of a Hamiltonian system with Hamiltonian H if
{H,L}= 0.

The proof of this proposition is similar to the proof that H is a constant, and is left as an exercise
to the reader.

Definition 5 A Hamiltonian system is said to be completely integrable if it has n first integrals
(including the Hamiltonian itself), where n is the number of degrees of freedom.

In mechanical systems, the first integrals are often familiar quantities.
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Example 2.1 Consider the two-body orbital problem with m1 � m2. In this case, we can treat
the body of mass m1 as being essentially motionless.1 Moreover, with just two bodies, the
coordinate system can always be chosen in such a way that m1 is at the origin, and that z = 0,
i.e. the motion is confined to the (x,y) plane. The Hamiltonian is

H =
p2

x + p2
y

2m2
−

Gm1m2
√

x2 + y2
.

Based on our knowledge of mechanics, we expect the angular momentum

L = r×p = xpy− ypx

to be a constant of the motion. If this is so, the Poisson bracket of H with L should be zero:

{H,L} =
∂H
∂px

∂L
∂x
−

∂H
∂x

∂L
∂px

+
∂H
∂py

∂L
∂y
−

∂H
∂y

∂L
∂py

=
px

m2
py−

Gm1m2x

(x2 + y2)
3/2

(−y)+
py

m2
(−px)−

Gm1m2y

(x2 + y2)
3/2

x

= 0.

The angular momentum is therefore, as expected, a constant of the motion. This means that
the system is confined to the intersection of the hyperplanes H = E and L = `, where E and `
are constants determined by the initial conditions. This intersection is an invariant manifold
of the differential equations since all possible trajectories for a given E and ` lie within it.

What does this manifold look like? We have two equations connecting our four variables, so
these equations implicitly define a two-dimensional surface in the four-dimensional phase
space. In this case, this surface is easy to plot using Maple. See Appendix B for sample
code. We start by solving for y (say) from the angular momentum:

y = (xpy− `)/px.

We then substitute this expression into the energy equation. Depending on the total energy,
we get different kinds of results:

1. The surface is a torus if E < 0 (Fig. 2). The trajectories on the torus can either be peri-
odic (which they are for this simple problem) or quasiperiodic, i.e. they wind around
and around the torus without repeating themselves. In the latter case, a trajectory even-
tually covers the whole torus and is said to be ergodic. In the former case, slightly
different initial conditions give different orbits.

2. The surface is essentially a cylinder if E > 0 (Fig. 3) or if E = 0 (Fig. 4). This corre-
sponds to a case where the lighter particle has enough energy to escape the gravitational
attraction of its heavier neighbor. The trajectories wind around this cylinder, either to-
ward x = ∞ or toward x =−∞.

1A more careful treatment would transform to centre-of-mass and relative coordinates. We would obtain essentially
the same Hamiltonian, with a small adjustment in the constants appearing in the equation.
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Figure 2: Invariant torus arising from the single-planet orbital problem. This case corresponds to
m1 = 100000kg, m2 = 1000kg, E =−1.67×10−6 J, and ` = 100kgm2/s.

The foregoing example brings out important features of integrable Hamiltonian problems: In-
variant tori or cylinders are generically seen. The study of these invariant manifolds and how they
change when we change the Hamiltonian is an important part of the theory of Hamiltonian dy-
namical systems. The study of trajectories on these manifolds is of course also interesting and
important. In the case of integrable Hamiltonians, the behavior can’t be much more complicated
than a quasiperiodic trajectory.

3 Numerical integration

We won’t go into great detail, but there is an important issue which we must discuss in relation
to the numerical integration of Hamiltonian systems: Most numerical methods do not preserve the
constancy of H. Many numerical methods do a good job of holding H reasonably constant for
simple problems, but not for more complex problems, especially if long trajectories are wanted.
Numerical integration methods which bound the variation of H are said to be symplectic. We will
discuss this problem and the construction of symplectic integrators in this section. However, we
will not undertake a full implementation, the details being rather messy.

As an introduction to this topic, let us discuss the simplest numerical integration method,
namely the forward Euler method. The idea behind this algorithm is very simple: The differential
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Figure 3: Invariant cylinder arising from the single-planet orbital problem. All parameters are as
in Fig. 2, except E = 5.3×10−7 J and ` = 120kgm2/s.

equation
dz
dt

= f(z, t), (4)

where z is the vector of phase-space coordinates, can be interpreted as follows, according to the
basic definition of the derivative:

lim
∆t→0

z(t +∆t)− z(t)
∆t

= f(z(t), t).

Euler’s method simply consists in taking small values of ∆t and doing away with the limit. Since
∆t is fixed, we will be calculating z at following sequence of times: ∆t,2∆t,3∆t, . . ., j∆t, . . .. We
therefore label the values of z by j, the number of multiples of the step size ∆t which have passed.
Euler’s method can thus be summarized by the formula

z j+1 = z j +∆tf(z j, j∆t). (5)

Equation 5 defines a dynamical system with discrete time (indexed by j) in which the state at the
next time increment is calculated from a simple formula. This is called a map. In the limit ∆t→ 0,
the Euler map converges on the solutions of the differential equation 4. Hopefully, for small values
of ∆t, Euler’s method will give results which are at least reasonably representative of those of the
original differential equation.

6



–0.06
–0.04

–0.02
0

0.02
0.04

0.06
px

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

py
–100000

–50000

0

50000

100000

x

Figure 4: Invariant surface arising from the single-planet orbital problem with E = 0 and ` =
115kgm2/s, all other parameters being set as in Fig. 2.

As you can imagine, Euler’s method is a very naı̈ve technique, and tends not to be very accurate.
Nevertheless, it has its uses, among them pedagogical applications. We will use it here to illustrate
the problem you run into with ordinary numerical methods and Hamiltonian systems.

Example 3.1 Suppose that we want to solve the differential equations 3 which arise from the
Hamiltonian 2 by Euler’s method. Then we have

x j+1 = x j +∆t p j/m,

p j+1 = p j−∆tkx j.

The value of the Hamiltonian at time index j +1 is

H(x j+1, p j+1) =
1
2

kx2
j+1 +

p2
j+1

2m

=
k
2

(

x j +∆t p j/m
)2

+
1

2m

(

p j−∆tkx j
)2

=
1
2

kx2
j +

p2
j

2m
+

k
m

(∆t)2

(

1
2

kx2
j +

p2
j

2m

)

= H(x j, p j)

(

1+
k
m

(∆t)2
)

.
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The value of the Hamiltonian therefore grows by a factor of 1 + k
m(∆t)2 at every step. The

problem is less serious the smaller we make ∆t, but it remains that it is often just not accept-
able to have H grow (or decrease) with time.

Most of the common numerical methods you may have heard of (Runge-Kutta, Gear, etc.) are
not symplectic. For some problems, some of these methods give reasonable results. However, if
you rely on these methods for Hamiltonian systems, you will sooner or later get burned.

Euler’s method is an explicit method: Given the current point in phase space, we can calculate
the next point just by plugging numbers into a formula. Unfortunately, all general-purpose sym-
plectic integration methods are implicit: We can’t in general write down a formula for the next
point. Rather, we have to solve an equation (usually numerically) to calculate (x j+1,p j+1). There
are however some explicit methods for special forms of the Hamiltonian which we will not discuss
here.

The key to maintaining the constancy of the Hamiltonian is to derive a numerical method
directly from Hamilton’s equations 1. Let’s start with equation 1a. We can estimate the time
derivative on the left-hand side as we did in Euler’s method:

dxi

dt
≈

xi, j+1− xi, j

∆t
.

In this equation, xi, j+1 is the value of xi at time step j. The right-hand side of equation 1a is also
a derivative. In each time step, we will increment the variables, for instance incrementing pi from
pi, j to pi, j+1. Since we only take small time steps, pi should only change by a small amount. This
gives us an opportunity to evaluate ∂H/∂pi by using another finite-difference approximation. You
can probably imagine what we need to do, but it’s a bit of a mess to write down without some
special notation. Let p j← pi, j+1 be the vector obtained by replacing pi, j by pi, j+1 in the vector of
momenta at time step k, p j. Then,

∂H
∂pi
≈

H(x j,p j← pi, j+1)−H(x j,p j)

pi, j+1− pi, j
.

Putting the two sides together, we have

xi, j+1− xi, j

∆t
=

H(x j,p j← pi, j+1)−H(x j,p j)

pi, j+1− pi, j
. (6a)

We can repeat this procedure for equation 1b, with one minor variation:

pi, j+1− pi, j

∆t
=−

H(x j← xi, j+1,p j← pi, j+1)−H(x j,p j← pi, j+1)

xi, j+1− xi, j
. (6b)

The reason that we used the updated momentum in equation 6b is that this decision makes the
scheme symplectic. To see this, rearrange equations 6a and 6b to

1
∆t

(

xi, j+1− xi, j
)(

pi, j+1− pi, j
)

= H(x j,p j← pi, j+1)−H(x j,p j),

and
1
∆t

(

xi, j+1− xi, j
)(

pi, j+1− pi, j
)

= −
[

H(x j← xi, j+1,p j← pi, j+1)−H(x j,p j← pi, j+1)
]

.

8



Now subtract these two equations:

0 = H(x j← xi, j+1,p j← pi, j+1)−H(x j,p j),

or
H(x j← xi, j+1,p j← pi, j+1) = H(x j,p j).

In other words, the update rule consisting of equations 6 keeps the value of H constant for each
pair of conjugate variables (xi, pi) to which it is applied. Thus, the method is symplectic.

The tradeoff is that we have an implicit method: We need values of the Hamiltonian with some
of the coordinates evaluated at the unknown next time point. We therefore have 2n equations in
2n unknowns. Unless the Hamiltonian is of a particularly simple form, we won’t be able to reduce
this problem to a simple mapping.

Not all symplectic integration methods hold the value of the Hamiltonian exactly constant.
Rather, their effect is to limit the variation in the value of the Hamiltonian. The drift in the Hamil-
tonian encountered with ordinary numerical methods can be disastrous. Holding the Hamiltonian
within tight bounds is often enough to give good results, and one is often content to trade off exact
constancy of the Hamiltonian against step size in order to accelerate long integrations.

Appendices

A Maple code for drawing the orbits of the harmonic oscillator

k := 200;
m := 0.1;
H := (x,p) -> pˆ2/(2*m) + k*xˆ2/2;
with(plots):
contourplot(H(x,p),x=-0.3..0.3,p=-1.2..1.2,contours=[$1..6]);

B Maple code for drawing the invariant tori or cylinders of
Hamiltonians with two degrees of freedom

y := (x*py - ell)/px; # Calculate y from angular momentum
H := (x,y,px,py) -> (pxˆ2+pyˆ2)/(2*m2) - G*m1*m2/sqrt(xˆ2+yˆ2);
m1 := 1e11; # A slightly different set of masses than in the notes
m2 := 1000/1e6;
G := 6.67e-11;
x0 := 1000; # Initial point (x,y,px,py) = (x0,0,0,p0)
p0 := 0.1/sqrt(1e6);
En := H(x0,0,0,p0); # Set the energy
ell := x0*p0; # Set the angular momentum
with(plots):
implicitplot3d(H(x,y,px,py)=En,px=-p0..p0,py=-p0..p0,x=-5*x0..5*x0,
axes=BOXED,grid=[10,40,40],orientation=[-35,50],shading=NONE);
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