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Introduction

What is a bifurcation?

Interesting dynamical systems typically have at least one attractor,
i.e. some kind of structure in phase space that is reached from almost
all points inside a basin of attraction.

The only type of attractor we have considered so far are equilibrium
points.

A bifurcation is a change in the qualitative behavior of the system
that can be observed by scanning the parameters.

Changes in behavior can include

A change in the stability of an attractor
A change in the number of attractors
A change in the types of attractors
Often, several of the above at the same time
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Introduction

Bifurcation diagrams

A bifurcation diagram shows how the attractors change as we change
a parameter.
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Saddle-node bifurcation

Saddle-node bifurcation
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Saddle-node bifurcation

Saddle-node bifurcation

The name of these bifurcations comes from their appearance in two-
and higher-dimensional systems, but they are really a bifurcation in
one-dimensional dynamics.

“Snapshots” of the dynamics:

Two steady states:

At bifurcation:

After the bifurcation:
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Saddle-node bifurcation

Hysteresis and catastrophes
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Transcritical bifurcation

Transcritical bifurcation

There is one other possibility when a stable and an unstable
equilibrium point collide, which is that they pass through each other,
exchanging stability as this happens:
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Transcritical bifurcation

Transcritical bifurcation

“Snapshots” of the dynamics:

Before the bifurcation:

At bifurcation:

After the bifurcation:
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Photoactivated enzyme

Example 1: a photoactivated enzyme-catalyzed reaction

Experimental setup:

DCPIP(ox)

Hervagault et al., in Dynamics of Biochemical Systems (Ricard and Cornish-Bowden, Eds.), Plenum: New York, 1984, pp.

157–169.
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Photoactivated enzyme

Example 1 (continued)
Stirred tank reactors

The device is a continuous stirred tank reactor (CSTR), with fresh
reactant solution pumped in at a rate f (perhaps measured in L/h).

If the concentration of DCPIP in the inflow is S0, then the change in
concentration of DCPIP due to the inflow is +fS0/V .

Because of the vigorous stirring, the concentration of DCPIP in the
tank is uniform, with value S . The change in concentration of DCPIP
due to outflow is −fS/V .
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Photoactivated enzyme

Example 1 (continued)

The thylakoid membrane preparation at the bottom of the reactor
needs light to reduce DCPIP.

The reaction rate is therefore proportional both to the rate of enzyme
catalysis (treated in the Michaelis-Menten approximation) and to the
intensity of the light that reaches the membrane (I ).

DCPIP absorbs red light strongly, so I depends on S .
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Photoactivated enzyme

Example 1 (continued)

Overall rate equation:

dS

dt
=

f

V
(S0 − S) − I (S)

vmaxS

S + KM

Now we just need to figure out I (S) using the Beer-Lambert law:

A = log10

(
I0

I (S)

)
= εLS

∴ I (S) = I010−εSL

Dimensionless equation:

ṡ = s0 − s − λe−κs
s

s + 1
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Photoactivated enzyme

Example 1 (continued)

Equilibrium points satisfy

1

λ
(s0 − s) = e−κs

s

s + 1

The left-hand size is a straight line with negative slope.

Right-hand side:
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SI model

Example 2: A model for a fatal infectious disease

There is a fairly standard mass-action formulation for infectious
diseases known as “SIR models”, originally due to Kermack and
McKendrick.

S: Susceptible
I: Infected

R: Recovered

We’re going to look at a very simple model without an R class, so an
SI model.

We’re going to assume (for now) 100% mortality in the infected class.
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SI model

Example 2 (continued)

Assume the following dynamical equations:

dS

dt
= rS

(
1 − S

K

)
− cIS

dI

dt
= cIS −mI

c is a transmission coefficient for the infection.
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