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What is a bifurcation?

@ Interesting dynamical systems typically have at least one attractor,
i.e. some kind of structure in phase space that is reached from almost
all points inside a basin of attraction.

@ The only type of attractor we have considered so far are equilibrium
points.

@ A bifurcation is a change in the qualitative behavior of the system
that can be observed by scanning the parameters.

@ Changes in behavior can include

A change in the stability of an attractor

A change in the number of attractors

A change in the types of attractors

Often, several of the above at the same time
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Introduction

Bifurcation diagrams

@ A bifurcation diagram shows how the attractors change as we change
a parameter.
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Saddle-node bifurcation

Saddle-node bifurcation
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Saddle-node bifurcation

@ The name of these bifurcations comes from their appearance in two-
and higher-dimensional systems, but they are really a bifurcation in
one-dimensional dynamics.

@ “Snapshots” of the dynamics:
4> <7
M)
/)

Two steady states:

At bifurcation: D

After the bifurcation:
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Saddle-node bifurcation

Hysteresis and catastrophes
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Transcritical bifurcation

Transcritical bifurcation

@ There is one other possibility when a stable and an unstable
equilibrium point collide, which is that they pass through each other,
exchanging stability as this happens:
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Transcritical bifurcation

Transcritical bifurcation

@ “Snapshots” of the dynamics:

)
Before the bifurcation: O @
At bifurcation: D
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After the bifurcation: U o
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Photoactivated enzyme

Example 1: a photoactivated enzyme-catalyzed reaction

@ Experimental setup:

DCPIP(OX) N i N

Hervagault et al., in Dynamics of Biochemical Systems (Ricard and Cornish-Bowden, Eds.), Plenum: New York, 1984, pp.
157-169.
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Photoactivated enzyme

Example 1 (continued)

Stirred tank reactors

@ The device is a continuous stirred tank reactor (CSTR), with fresh
reactant solution pumped in at a rate f (perhaps measured in L/h).

@ If the concentration of DCPIP in the inflow is Sp, then the change in
concentration of DCPIP due to the inflow is +1Sp/ V.

@ Because of the vigorous stirring, the concentration of DCPIP in the
tank is uniform, with value S. The change in concentration of DCPIP
due to outflow is —fS/V.
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Example 1 (continued)

@ The thylakoid membrane preparation at the bottom of the reactor
needs light to reduce DCPIP.

@ The reaction rate is therefore proportional both to the rate of enzyme
catalysis (treated in the Michaelis-Menten approximation) and to the
intensity of the light that reaches the membrane (/).

@ DCPIP absorbs red light strongly, so / depends on S.
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Example 1 (continued)
@ Overall rate equation:
ds f DmaxS
=2 _ 7 —8) — [(S)—max2
R vAS R S

@ Now we just need to figure out /(S) using the Beer-Lambert law:

A= |0g10 <I(S)> = €L5
L 1(S) = lh1o—=t

@ Dimensionless equation:

S

§=5—5— e FT—0
0 s+1
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Photoactivated enzyme

Example 1 (continued)

@ Equilibrium points satisfy

1 s
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@ The left-hand size is a straight line with negative slope.

@ Right-hand side:

0.25

0.2

0.15

0.1 e™Ss/(s+1) B
K=1
0.05 b
0 .

Marc R. Roussel Saddle-node and transcritical bifurcations September 12, 2019

13/15



S| model

Example 2: A model for a fatal infectious disease

@ There is a fairly standard mass-action formulation for infectious
diseases known as “SIR models”, originally due to Kermack and
McKendrick.

S: Susceptible
[: Infected
R: Recovered

o We're going to look at a very simple model without an R class, so an
S| model.

e We're going to assume (for now) 100% mortality in the infected class.
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S| model

Example 2 (continued)

@ Assume the following dynamical equations:

ds S
dl

E:CIS—ITI/

@ c is a transmission coefficient for the infection.
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