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In the previous two lectures, we determined the conditions for the validity
of the steady-state approximation in an ozone decomposition mechanism,
and then assuming that these conditions held, we worked out an approximate
solution to the differential equations. What if the steady-state approximation
is actually a poor approximation? Can we improve on it? One approach to
doing this is geometric singular perturbation theory. Note that the steady-
state approximation gives us a differentiable (but not invariant) manifold
relating the phase-space coordinates, of the form

y = yS(x).

One way to understand Tikhonov’s theorem is that it tells us that yS(x) is
close to an invariant manifold that trajectories follow down to the equilibrium
point after the decay of transients. This manifold is called a slow manifold,
M. M is an invariant manifold that comes into the equilibrium point along
the slow eigenvector. But we know that invariant manifolds must satisfy the
invariance equation:

dy

dτ
=
dyM
dx

dx

dτ
.

So how do we solve the invariance equation? There are many methods, but
in the spirit of singular perturbation theory, we’re going to expand yM(x) in
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a series in the parameter ε. This approach is known as geometric singular
perturbation theory.

Our rate equations are

dx

dτ
= −x+ αy − (1− α)xy,

ε
dy

dτ
= x− αy − (1− α)xy.

We want to write yM in the form

yM(x) = φ0(x) + εφ1(x) + ε2φ2(x) +O(ε3),

where the functions φi(x) are unknown functions. We substitute our ansatz
for yM into the invariance equation:

1

ε

{
x−

[
φ0(x) + εφ1(x) + ε2φ2(x) +O(ε3)

]
[α + (1− α)x]

}
=

[
dφ0

dx
+ ε

dφ1

dx
+ ε2

dφ2

dx
+O(ε3)

]
×

{
−x+

[
φ0(x) + εφ1(x) + ε2φ2(x) +O(ε3)

]
[α− (1− α)x]

}
∴ x−

[
φ0(x) + εφ1(x) + ε2φ2(x) +O(ε3)

]
[α + (1− α)x]

= ε

[
dφ0

dx
+ ε

dφ1

dx
+ ε2

dφ2

dx
+O(ε3)

]
×

{
−x+

[
φ0(x) + εφ1(x) + ε2φ2(x) +O(ε3)

]
[α− (1− α)x]

}
All we have to do now is to collect terms in different powers of ε across both
sides of the equation, and solve for each of the φi(x).

ε0:

x− φ0(x) [α + (1− α)x] = 0.

∴ φ0(x) =
x

α + (1− α)x
.

You may recognize this as the steady-state approximation. The zero-
order term in geometric singular perturbation theory will typically be
the steady-state approximation.
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ε1:

−φ1(x) [α + (1− α)x] =
dφ0

dx
{−x+ φ0(x) [α− (1− α)x]}

dφ0

dx
=

α

[α + (1− α)x]2

∴ φ1(x) =
α

[α + (1− α)x]2
x− x

α+(1−α)x [α− (1− α)x]

α + (1− α)x

=
2αx2(1− α)

[α + (1− α)x]4

ε2:

−φ2(x) [α + (1− α)x]

=
dφ0

dx
φ1(x) [α− (1− α)x] +

dφ1

dx
{−x+ φ0(x) [α− (1− α)x]}

It would not be difficult to get an explicit expression for φ2(x), but
you can see that this is getting tedious. It might make sense to use
Maple. . .
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