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We can use singular perturbation theory to obtain approximate solutions
to the time evolution of the system. In this lecture, we pursue our analysis
of the ozone decomposition model to work out the time dependence implied
by these equations to lowest order in the perturbation parameter.

The rate equations we obtained previously were
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These equations, in the limit of very small €, govern the evolution on the
slow time scale, the so-called outer solution. On the slow time scale, to
lowest order in €, we can replace these equations by
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However, we would have started out with some initial conditions z = [O3]/[Os], =
1, y = [0]/[0] puxest = 0. The reduced system given above does not pass
through this point. (Try substituting z = 1 into the equation for y.) So
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somehow, we need to get from our real initial condition to the conditions
represented by the reduced system. We will have to solve a different problem
to solve for the dynamics on the fast time scale, i.e. the inner solution and
then join the two solutions together.

1 The outer solution

Combining the two equations in the system (2), we get
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This equation can be solved relatively straightforwardly by separation of
variables:
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Here, I used u and ¢t as dummy integration variables to avoid ambiguity in
the expression. I also have a (for now) unknown x;, which is the value of x
at which the outer solution takes over from the inner solution. Evaluating
the integrals, we have

dx =dr.

2 The inner solution

To get the inner solution (the fast initial transient), we need to transform our
rate equations by stretching out the time variable. Specifically, we choose

T =¢€0,

where 6 is our new “stretched” time, i.e. a measure of time appropriate on
the fast time scale. This transformation of time gives the fast-time scale



differential equations
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If € is small, to lowest order, these equations become
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Thus, z is approximately constant during the transient. Given our initial
conditions, the solution for x(t) is therefore

z(t) =~ 1.
Equation (3b) therefore becomes
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This equation is easy to solve by separation of variables. The solution is

yzl—e‘e.

3 Matching

To lowest order in €, we have the following:
e On the fast time scale, v ~ 1 and y = 1 — e, with 6 = 7/e.

e On the slow time scale,

and



Note that, in the slow solution, if we set * = x;, 7 = 0. x; is therefore
the initial condition for the slow solution. This should match the large-
asymptotics of the fast solution. Since x is approximately independent of
on the fast time scale, this means that we must have x; = 1. But if we make
this choice, do the values of y match up? As 8 — oo, y — 1. If we substitute
x =x; = 1 into ys(x), we get y = 1, so the outer solution matches the inner
solution automatically.

We can go just a bit further and generate a global solution for y, i.e. one
solution that governs the time evolution on both time scales. The rule is the
following;:

global B fast " slow _
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In this case, the “common part” is y = 1, which is both the limit of the fast

solution as § — oo and the initial value of y for the slow solution. Thus we
have
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where z(7) is found by solving

« (1—1> ) =7

21— a) \z



