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The natural decomposition of ozone in the atmosphere proceeds by a
number of pathways, one of which is the following:

M + O3
k1−−⇀↽−−
k−1

O2 + O + M

O + O3
k2−−→ 2 O2

M represents any of a number of stable molecules from which ozone can gain
enough energy in a collision to dissociate. We assume an experiment that
replicates atmospheric conditions, in which O2 would be in large excess so
that its concentration can be treated as constant. We therefore obtain the
following pair of rate equations:

d[O3]

dt
= −k1[M][O3] + k−1[M][O2][O]− k2[O3][O]

d[O]

dt
= k1[M][O3]− k−1[M][O2][O]− k2[O3][O]

In classical chemical kinetics, we would obtain an expression for the rate
of reaction that did not involve the intermediate [O] by applying the steady-
state approximation. Specifically, we would set d[O]/dt = 0, and then use this
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equation to eliminate [O]. We would justify this by saying that the oxygen
atoms that appear as intermediates react fast once made. We would therefore
expect that, after a short time, the rate or production would closely match
the rate of removal of these atoms. In other words, the net rate of change of
[O] is small. But mathematically, what does this mean? Small compared to
what?

Questions of relative smallness of terms in equations are resolved us-
ing a mathematical procedure known as scaling. This is a special case of
transformation to dimensionless variables in which we attempt to find trans-
formations that make our variables O(1).

Typically, the scaling of a reactant like ozone is easy: We use the initial
concentration to transform the concentration:

x = [O3]/[O3]0.

x is clearly O(1) until very late stages of the reaction when most of the ozone
has been consumed. Intermediates are trickier. Because they tend to be
highly reactive, their maximal concentrations are governed by the dynamics
of the system, and not by simple stoichiometric considerations. However, we
do know how [O3] and [O] are related when [O] reaches its maximum: At a
maximum of [O], d[O]/dt = 0, so

k1[M][O3]− k−1[M][O2][O]− k2[O3][O] = 0,

or

[O]max =
k1[M][O3]

k−1[M][O2] + k2[O3]
.

The problem is that we don’t know the value of [O3] at which [O] reaches
its maximum. However, if oxygen atoms are very reactive, you would expect
that maximum to be reached early, before much ozone has reacted. Thus,
we would expect that [O3] ≈ [O3]0 when [O] reaches its maximum value.
Consequently,

[O]max,est ≈
k1[M][O3]0

k−1[M][O2] + k2[O3]0
.

For scaling purposes, we don’t need to know the maximum value very pre-
cisely. We just need a decent estimate that is of the correct order of mag-
nitude. This is what we have just obtained. We therefore define the dimen-
sionless variable

y = [O]/[O]max,est = [O]
k−1[M][O2] + k2[O3]0

k1[M][O3]0
.
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We will defer the choice of a scaling for time. For now, we will just
substitute our new dimensionless variables into the rate equations. If we do
this and rearrange a bit, we get

dx

dt
= k1[M]

(
−x+

k−1[M][O2]

k−1[M][O2] + k2[O3]0
y − k2[O3]0

k−1[M][O2] + k2[O3]0
xy

)
,

dy

dt
= (k−1[M][O2] + k2[O3]0)

×
(
x− k−1[M][O2]

k−1[M][O2] + k2[O3]0
y − k2[O3]0

k−1[M][O2] + k2[O3]0
xy

)
.

The dimensionless parameter

α =
k−1[M][O2]

k−1[M][O2] + k2[O3]0

appears repeatedly in these equations. Note that 0 < α < 1. Using this
definition, we have

dx

dt
= k1[M] [−x+ αy − (1− α)xy] ,

dy

dt
= (k−1[M][O2] + k2[O3]0) [x− αy − (1− α)xy] .

We still haven’t picked a scaling for time. The idea now is that the
reactant (O3) evolves on a slow time scale. Its equation should therefore
consist largely of O(1) terms. This can be achieved if (k1[M])−1 represents
the slow time scale. In other words, we should define a dimensionless time

τ = (k1[M])t.

Doing this, we get

dx

dτ
= −x+ αy − (1− α)xy, (1a)

ε
dy

dτ
= x− αy − (1− α)xy, (1b)

with

ε =
k1[M]

k−1[M][O2] + k2[O3]0
. (1c)
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The equations are now in the Tikhonov singular perturbation form. The
first thing to do is to check the stability of the adjoined system. In other
words, if we treat x as a fixed quantity, we need to find out if

yS =
x

α + (1− α)x

is a stable solution of

dy

dτ
= x− αy − (1− α)xy.

This is a one-dimensional dynamical system in y. Note that if y < yS , we
have

y <
x

α + (1− α)x

∴ y [α + (1− α)x] < x

∴ x− y [α + (1− α)x] =
dy

dτ
> 0.

We can similarly show that if y > yS , dy/dτ < 0. The flow implied by the
adjoined system is therefore

yy
S

This proves that y = yS(x) is a stable solution of the adjoined system.
We can conclude that if ε is sufficiently small, it should be possible to

approximate the system (1) by

dx

dτ
= −x+ αy − (1− α)xy,

y ≈ yS(x) =
x

α + (1− α)x
,

i.e. the steady-state approximation. ε is small if either

k1 � k−1[O2]

or

k1[M]� k2[O3]0.

Either of these conditions is sufficient for the steady-state approximation to
be valid.
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