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We had previously reduced the exciplex mechanism to the following set
of dimensionless ODEs:

ȧ = −2βa2 + c(2β + 1), (1a)

ċ = βa2 − c(β + 1). (1b)

(I renamed the parameter α to β to make the visual distinction between a
and the parameter a bit easier to see.) This system has a single equilibrium
point at (a∗, c∗) = (0, 0). The Jacobian evaluated at this point is

J∗ =

[
0 2β + 1
0 −(β + 1)

]
The two eigenvalues of this matrix are λ = 0 and λ = −(β + 1). The zero
eigenvalue combined with the negative eigenvalue means that we can’t de-
termine the local stability of the equilibrium point from the linear stability
analysis alone. However, we know that, at least near the equilibrium point,
trajectories will move towards a centre manifold along the eigenvector corre-
sponding to the negative eigenvalue. To complete the stability analysis, we
therefore need to figure out what happens on the centre manifold.

The first step is to figure out the orientation of the centre manifold near
the equilibrium point, which is given by the eigenvector associated with the
zero eigenvalue. It is also helpful, in order to have a complete picture of the
dynamics, to also determine the stable eigenvector. Eigenvectors satisfy

J∗v = λv
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or
(J∗ − λI)v = 0.

For the stable eigenvector, we have([
0 2β + 1
0 −(β + 1)

]
−
[
−(β + 1) 0

0 −(β + 1)

])[
v
(−)
1

v
(−)
2

]
= 0.

∴

[
β + 1 2β + 1

0 0

][
v
(−)
1

v
(−)
2

]
= 0

∴ (β + 1)v
(−)
1 + (2β + 1)v

(−)
2 = 0.

∴
v
(−)
2

v
(−)
1

= − β + 1

2β + 1
.

This is the slope of the stable eigenvector.
We proceed similarly for the centre eigenvector:

(J∗ − λI)v = J∗v.

∴

[
0 2β + 1
0 −(β + 1)

][
v
(0)
1

v
(0)
2

]
= 0.

∴ (2β + 1)v
(0)
2 = −(β + 1)v

(0)
2 = 0.

The centre eigenvector is therefore (1, 0), i.e. it lies along the a axis or,
equivalently, has a slope of zero. As noted in the textbook, this is not always
the case, although it happens quite often in irreversible chemical systems
with a centre manifold.

We now know that the centre manifold has a Taylor expansion around
the equilibrium point of the following form:

cCM(a) = γ2a
2 + γ3a

3 + . . . . (2)

The constant term is zero because the equilibrium point passes through the
origin, i.e. cCM(a∗) = c∗, and both a∗ and c∗ are zero. The linear term
is zero because the slope of the centre manifold (centre eigenvector) at the
equilibrium point is zero. To find the behavior on the centre manifold, we can
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substitute cCM into equation (1a). This will give us the evolution equation
for a on the centre manifold. If we try this, we get

ȧ = −2βa2 + (2β + 1)
(
γ2a

2 + γ3a
3 +O(a4)

)
. (3)

Our objective from here is to determine the behavior of this differential
equation to lowest order in a, since this will in turn determine the behavior
near the equilibrium point. This means that we need to figure out (at least)
the value of γ2. To do this, we use the invariance equation. The centre
manifold is an invariant manifold, i.e. a trajectory, written in the form c =
ctextCM(a). differentiating this equation with respect to time and using the
chain rule, we get

dc

dt
=
dcCM

da

da

dt
.

Every trajectory is a solution of the invariance equation. However, by using
what we already know about the centre manifold, namely that its first two
Taylor coefficients vanish, we specialize our result to this manifold.

Substituting equation (2) into the invariance equation, we get

βa2 − (β + 1)
(
γ2a

2 + γ3a
3 +O(a4)

)
=
(
2γ2a+ 3γ3a

2 +O(a3)
) [

−2βa2 + (2β + 1)
(
γ2a

2 + γ3a
3 +O(a4)

)]
.

The trick now is to collect all the terms in ai for each i starting with 2. Since
we are only interested in the behavior near equilibrium, we will stop as soon
as we are able to determine this behavior, i.e. as soon as we get a nonzero
term in equation (3). First, we collect terms in a2:

β − (β + 1)γ2 = 0.

∴ γ2 =
β

β + 1
.

If we substitute this value of γ2 into equation (3), we get

ȧ = a2
(
−2β +

β(2β + 1)

β + 1

)
+ (2β + 1)

(
γ3a

3 +O(a4)
)

≈ − β

β + 1
a2.

We now have what we want, namely an equation for the evolution on the
centre manifold near the equilibrium point. This equation is itself a one-
dimensional dynamical system, with a semi-stable equilibrium point at a = 0.
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Figure 1: Flow near equilibrium. The centre manifold, which is quadratic
near the equilibrium point, is shown in red. The equilibrium point is semi-
stable, i.e. only stable when approached from positive values of a.

Thus, for any positive initial conditions near the equilibrium point, after the
system has relaxed to the centre manifold, trajectories will approach the
equilibrium point. The equilibrium point is therefore an attractor for initial
conditions sufficiently close to the equilibrium point. We have to use other
techniques (phase-plane analysis, Lyapunov functions) to determine what
happens for initial conditions far from equilibrium. Figure 1 summarizes our
conclusions.
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