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Consider the reversible dimerization reaction

2 A
kf−−⇀↽−−
kr

C.

The rate equations are (dispensing with the usual square brackets)

Ȧ = −2kfA
2 + 2krC,

Ċ = kfA
2 − krC.

Using either of the rate equations, we find the equilibrium condition

C∗

(A∗)2
=

kf
kr

. (1)

In order to find the equilibrium point, we have to also use the conservation
relation A+2C = A0. It is sufficient for us to know that an equilibrium point
exists that satisfies equation (1).

I claim that the following is a Lyapunov function for this system:

L(A,C) = A ln (A/A∗)− A + A∗ + C ln (C/C∗)− C + C∗.

We first have to show that it is a positive-definite function for the equi-
librium point (A∗, C∗). The first part is easy: By direct substitution, we
get L(A∗, C∗) = 0. Next, we set out to prove that L reaches a minimum at
(A∗, C∗). At a critical point, ∂L/∂A = ∂L/∂C = 0.

∂L

∂A
= ln (A/A∗) ,

∂L

∂C
= ln (C/C∗) .
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The partial derivatives are equal to zero when A/A∗ = C/C∗ = 1, i.e. at the
equilibrium point. To prove that we have a minimum, we still need to apply
the second derivative test.

∂2L

∂A2
=

1

A
,

∂2L

∂C2
=

1

C
,

∂2L

∂A∂C
= 0.

We have

∂2L

∂A2

∣∣∣∣
(A∗,C∗)

=
1

A∗ > 0,[
∂2L

∂A2

∂2L

∂C2
−
(

∂2L

∂A∂C

)2
]
(A∗,C∗)

=
1

A∗C∗ > 0.

The second derivative test therefore shows that L has a minimum at (A∗, C∗).
This is the only extremum of L, and since L(A∗, C∗) = 0, Then L(A,C) >
0 ∈ R2

+ − (A∗, C∗). This completes the proof that L is a positive-definite
function for the equilibrium point.

A Lyapunov function is a strictly decreasing function of time (except at
the equilibrium point). Thus, consider

L̇ =
∂L

∂A
Ȧ +

∂L

∂C
Ċ

= ln(A/A∗)
(
−2kfA

2 + 2krC
)

+ ln(C/C∗)
(
kfA

2 − krC
)

=
(
kfA

2 − krC
)

[ln(C/C∗)− 2 ln(A/A∗)]

=
(
kfA

2 − krC
)

ln

(
C

A2

(A∗)2

C∗

)
.

Now use equation (1):

L̇ =
(
kfA

2 − krC
)

ln

(
krC

kfA2

)
.

If kfA
2 > krC then the first factor on the right-hand side is positive, but the

logarithm is negative, so L̇ < 0. If, on the other hand, kfA
2 < krC, then
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the first factor is negative and the logarithm is positive, so that L̇ is again
negative. Therefore L̇ < 0 ∈ R2

+ − (A∗, C∗), which makes L a Lyapunov
function for the equilibrium point. We can conclude that the equilibrium
point is globally stable in R2

+.
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