Analysis of an SI model

Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge

September 12, 2019

We are studying a model for an infectious disease with 100% mortality. The equations are

$$\begin{split} \frac{dS}{dt} &= rS\left(1 - \frac{S}{K}\right) - cIS,\\ \frac{dI}{dt} &= cIS - mI. \end{split}$$

Transform to dimensionless form using the following definitions:

$$s = S/K,$$
 $y = cI/m,$ $\tau = rt,$ $\alpha = m/r,$ $\beta = cK/r.$

The dimensionless rate equations are

$$\dot{s} = s(1 - s) - \alpha y s,$$

$$\dot{y} = \beta y s - \alpha y.$$

We look for equilibria by solving

$$s(1-s) - \alpha ys = 0,$$

$$\beta ys - \alpha y = 0.$$

There are three solutions:

$$(s^{\dagger}, y^{\dagger}) = (0, 0),$$
 (extinction)
 $(s^{\ddagger}, y^{\ddagger}) = (1, 0),$ (disease dies out)
 $(s^{*}, y^{*}) = \left(\frac{\alpha}{\beta}, \frac{\beta - \alpha}{\alpha \beta}\right)$ (disease is endemic)

For the stability analysis, we need the Jacobian:

$$J = \left[\begin{array}{cc} 1 - 2s - \alpha y & -\alpha s \\ \beta y & \beta s - \alpha \end{array} \right].$$

At $(s^{\dagger}, y^{\dagger})$, we have

$$J^{\dagger} = \left[\begin{array}{cc} 1 & 0 \\ 0 & -\alpha \end{array} \right].$$

This matrix has eigenvalues 1 and $-\alpha$, therefore the extinction equilibrium is **unstable**.

At
$$(s^{\ddagger}, y^{\ddagger})$$
,

$$J^{\ddagger} = \left[\begin{array}{cc} -1 & -\alpha \\ 0 & \beta - \alpha \end{array} \right].$$

The characteristic polynomial is

$$|\lambda I - J^{\ddagger}| = (\lambda + 1)(\lambda - \beta + \alpha),$$

so the eigenvalues are -1 and $\beta - \alpha$. If $\beta > \alpha$, then this point is unstable. On the other hand, if $\alpha > \beta$, this point is stable. From the definitions of the parameters, the condition for stability is m > cK. Thus, the disease dies out if mortality is high compared to transmission.

At the last equilibrium point, (s^*, y^*) , we have

$$J^* = \left[\begin{array}{cc} -\frac{\alpha}{\beta} & -\frac{\alpha^2}{\beta} \\ \frac{\beta-\alpha}{\alpha} & 0 \end{array} \right].$$

The characteristic polynomial is

$$\lambda^2 + \frac{\alpha}{\beta}\lambda + \frac{\alpha(\beta - \alpha)}{\beta} = 0.$$

Think of this as

$$\lambda^2 + c_1 \lambda + c_0 = 0.$$

 $c_1 > 0$. The sign of c_0 on the other hand is not fixed. Now consider

$$\lambda = \frac{1}{2} \left\{ -c_1 \pm \sqrt{c_1^2 - 4c_0} \right\}.$$

If $c_0 > 0$, then the quantity under the square root is either positive and smaller than c_1^2 , or it is negative. Either way, the real parts of both eigenvalues are negative. If, on the other hand, $c_0 < 0$, then the quantity under the square root is greater than c_1^2 , and $\lambda_+ > 0$. We conclude that (s^*, y^*) is stable if $\beta > \alpha$ and unstable if $\alpha > \beta$. This is precisely the reverse of the situation at $(s^{\ddagger}, y^{\ddagger})$. Thus, the disease becomes endemic is mortality is relatively smaller than transmission. Moreover, consider the case $\alpha = \beta$. Then $(s^*, y^*) = (1, 0) = (s^{\ddagger}, y^{\ddagger})$. The two equilibrium points exchange stability when they pass through each other, which by definition is a **transcritical bifurcation**.

Summary:

	$(s^{\ddagger},y^{\ddagger})$	(s^*, y^*)
	(disease dies out)	(disease endemic)
$\alpha > \beta$	stable	unstable
$\alpha < \beta$	unstable	stable