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1 Solubility and thermodynamics

Why do some substances dissolve in some solvents and not others? You probably have been
exposed to a number of rules of thumb, but it’s possible that you have never thought about
this very important question in detail. We’re going to apply a little thermodynamics here to
help us think about the factors which are important in determining solubility (or miscibility,
if we’re talking about two liquids).

Recall that a process is thermodynamically favored at constant temperature and pressure
if

∆G = ∆H − T∆S < 0.

A mixture always has more microstates than two separated components, so the entropy
of solution, ∆solS, is always positive.1 Accordingly, dissolving one substance in another is
always entropically favored. Thus, the real question is whether ∆solH is or is not too positive
for ∆solG to be negative, i.e. we will get a solution if

∆solH < T∆solS.

Of course, if ∆solH is negative, then this inequality is automatically satisfied, and we will
get a solution. If on the other hand ∆solH > 0, then the inequality tells us that the enthalpy
of solution can’t be too large.

What we need to do then is to figure out how large the entropy and enthalpy of solution
are likely to be, or at least what factors affect their magnitudes. We’re going to start by
looking a solutions involving small molecules to get our feet wet. Our eventual objective is
to discuss polymer solutions.

2 The lattice model of solutions

The statistical mechanics of gases is easy because the molecules are typically far apart and
randomly distributed in a volume. Conversely, solids are easy to treat because (at least for

1Depending on the context, ∆solS can also be called the entropy of mixing, ∆mixS.
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Figure 1: A two-dimensional square-lattice example of the lattice model of solutions. The
open circles represent solvent molecules. The filled circles represent solute molecules.

crystalline solids, which includes many of the solids we are most interested in like metals)
they are very regular. Solutions fall somewhere in between, which makes their statistical
mechanical treatment difficult: They have short-range order due to the intermolecular forces
between molecules, which are typically almost as close together in solutions as they are in
solids, but they lack long-range order. One way to deal with this complexity is to use models
which, hopefully, capture some aspects of the behavior of a solution. Provided we don’t try
to use a model for purposes which contradict in some way its basic assumptions, we can get
a lot of qualitative and, sometimes, even quantitative insight into solution behavior this way.

Molecules occupy a certain amount of space. For now, let’s consider a solvent/solute
system in which the solvent and solute occupy similar volumes. Imagine that we put a little
box around each solvent or solute molecule and pack them together in a regular lattice.
Figure 1 illustrates this situation. This may sound like a model for a solid, but if we imagine
that the molecules can move by swapping places with their neighbors, this is in fact a very
crude model of the liquid state. For the purposes of illustration, we’re going to picture this
arrangement as a two-dimensional square lattice, although our treatment won’t depend either
on the number of spatial dimensions or on the geometry of the lattice. The lattice model
will be a reasonable starting point for a theory of solutions provided we are not interested
in properties which depend too sensitively on the details of relative molecular orientations.

2.1 Enthalpy of solution

In the crude model discussed here, there is no distinction between enthalpy and internal
energy because the lattice does not change size when we introduce a solute molecule. Thus,
there is no pressure-volume work, and ∆U = ∆H.
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In solution thermodynamics, by convention solvent properties are labeled with the nu-
merical subscript 1 and solute properties are labeled with 2, so N1 is the number of solvent
molecules and N2 is the number of solute molecules, for instance. Let z be the coordina-
tion number of the lattice, i.e. the number of nearest-neighbor lattice sites. For the simple
square lattice illustrated in figure 1, z = 4. We are going to imagine a lattice that contains
N0 = N1 +N2 lattice sites, each occupied by a molecule. Initially, we imagine that the solute
and solvent are spatially segregated (with, e.g., the solute molecules all at the surface). We
will then randomly shuffle the molecules and ask ourselves what the effect is on the overall
energy. One way to think about it is that we will randomly swap molecules from different
parts of the lattice. If we do this enough times, then we will end up with a well-mixed
solution.

First of all, let’s dispense with a myth which many chemistry students carry with
them: The so-called hydrophobic effect is not due to repulsion between polar and nonpo-
lar molecules. Neutral molecules always attract, at least through London dispersion forces.
However, you can imagine that if we replace a solvent molecule by a solute molecule in the
part of the lattice that initially contains solvent, and vice versa, then we change the balance
of intermolecular forces. This is where the enthalpy of solution comes from.

Suppose that ε11 is the energy associated with the intermolecular forces between nearest-
neighbor solvent molecules, ε22 is the energy associated with the forces between nearest-
neighbor solute molecules, and ε12 is the energy associated with the forces between a solute-
solvent pair which are nearest neighbors to each other.2 A typical convention would be that
these energies are negative, with more negative values representing stronger intermolecular
forces. Considering the initially segregated state described above, imagine that we swap
a single solute and solvent pair in the lattice. Removing the solvent molecule from its
environment would have an energetic cost of −zε11. Similarly, removing the solute molecule
from its environment would have an energetic cost of −zε22.

3 Putting the solute molecule
in the solvent environment then generates z new solute-solvent contacts, as does putting
the solvent molecule in the solute environment. Thus, the energetic gain from these two
operations is 2zε12. Overall, we have

2z∆ε ≈ z [2ε12 − (ε11 + ε22)] ,

where the factor of 2 indicates that this is for the two molecules (one of solvent and one of
solute), and the factor of z makes ∆ε the energy of solution per contact:

∆ε ≈ ε12 −
1

2
(ε11 + ε22) . (1)

Now we ask the question: How many solute-solvent contacts are there in the solution
on average? Suppose that we focus on one particular solute molecule. The probability that
any one of the nearest-neighbor lattice sites is occupied by a solvent molecule is N1/(N1 +

2We ignore longer-range intermolecular forces altogether.
3The assumption in this very simple model is that the solute and solvent are not only similar in size, but

have identical coordination numbers. This is clearly the weakest part of the model for many solvent-solute
systems.
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N2 − 1) ≈ N1/(N1 + N2), using the fact that N1 and N2 are both large. If we have a
coordination number of z, then to the same degree of approximation, the average number
of solute-solvent contacts per solute molecule should be just zN1/(N1 +N2). Since we have
N2 solute molecules, the total number of contacts is therefore zN1N2/(N1 +N2). Since each
contact contributes ∆ε to the heat of solution, we have

∆solH = zN1
N2

N1 +N2

∆ε.

The fraction which occurs in this equation is obviously the mole fraction of the solute.
However, since each lattice site has the same volume in our model, it is also the volume
fraction of the solute, φ2:

∆solH = zN1φ2∆ε. (2)

This is the van Laar equation for the heat of solution. This equation turns out to be a
good initial approximation to the enthalpy of mixing, even when the solvent and solute are
different in size. In fact, we will rederive it for polymers in the next lecture.

Equations 1 and 2 provide some important clues on the factors which will be important
in determining the solubility. The main variable in the van Laar equation is ∆ε. This will
be negative (favorable) whenever the solute and solvent have stronger interactions with each
other than the average of the like-molecule interactions. If, on the other hand, like-molecule
interactions are particularly strong for one of the two solutes, then the enthalpy of solution
could be very positive, which would in turn make the free energy of solution positive. An
example would arise if trying to dissolve a hydrocarbon in water. Hydrocarbons are nonpolar
(or nearly so, depending on the geometry), so they are mostly subject to London dispersion
forces. On the other hand, water molecules have very strong hydrogen bonding interactions
with each other. Water-hydrocarbon interactions would mostly be due to dipole-induced
dipole forces, which are much weaker than hydrogen bonding. Thus, ε11 is very negative, and
ε12 is much smaller in magnitude, so hydrocarbons won’t dissolve in water to any appreciable
extent. If we add some alcohol groups to the hydrocarbon on the other hand, the solute will
now be able to make hydrogen bonds as well. This will tend to make both ε22 and ε12 more
negative. Depending on the number and placement of the alcohol groups, this may result in
a decrease in ∆ε, particularly since ε22 is weighted by a factor of 1

2
, which might eventually

lead to solubility of the compound in water. For example, neither hexane nor 1-hexanol is
very soluble in water, but hexanediols are.

2.2 Entropy of solution

The entropy of solution is almost embarrassingly easy to calculate using the Boltzmann
formula. If we have an N0-site lattice containing N1 molecules of solvent and N2 molecules
of solute, the total number of microstates is

W =
N0!

N1!N2!
.

The entropy is therefore

S = k lnW = k (lnN0!− lnN1!− lnN2!) .
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The entropy of the original segregated arrangement is 0 (only one microstate), so ∆solS = S.
We can use Stirling’s approximation to rewrite the factorials, as well as the relationship
N0 = N1 +N2:

∆solS = k [(N1 +N2) ln(N1 +N2)− (N1 +N2)−N1 lnN1 +N1 −N2 lnN2 +N2]

= k

[
N1 ln

N1 +N2

N1

+N2 ln
N1 +N2

N2

]
= −k

[
N1 ln

N1

N1 +N2

+N2 ln
N2

N1 +N2

]
.

∴ ∆solS = −k [N1 lnX1 +N2 lnX2] , (3)

where X1 and X2 are the mole fractions of the solvent and solute, respectively. You may
have derived an equation which looks identical to equation 3 in your previous courses in
thermodynamics for the entropy of mixing of two gases. In fact, this equation turns up
again and again when we mix two substances, regardless of the details of what is being
mixed or how.

Note that ∆solS is always positive, as we expect, since the mole fractions are, by definition,
less than 1.

With a slight rearrangement, we can rewrite equation 3 as a function of X2 only, using
the fact that X1 +X2 = 1:

∆solS

N1 +N2

= −k [(1−X2) ln(1−X2) +X2 lnX2] .

You can easily verify that this function reaches a maximum at X2 = 1
2
. Thus

∆solS ≤ k(N1 +N2) ln 2. (4)

For a given size of system, there is a maximum possible entropy of solution given by inequality
4. ∆solH on the other hand is not subject to any particular bound, so the latter quantity is
the one which determines the solubility of a compound in a solvent.

Finally note that, in the context of the lattice model, Xi = φi, the volume fraction, so
equation 3 can also be written

∆solS = −k [N1 lnφ1 +N2 lnφ2] .

This form of the entropy of solution will reappear when we treat polymer solutions in the
next lecture.

Exercises

1. Prove inequality 4.

2. Prove that ∆solG always becomes negative if φ2 is sufficiently small. Is this physically
reasonable?

Hint: Divide ∆solG by N1 +N2 and relate as many of the terms as possible to φ2.
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