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1 Introduction

Statistical mechanics provides the bridge between properties on a molecular
scale and those on a macroscopic scale. We therefore need to know a little
about the quantum mechanics of molecules. It turns out that, at least for
the issues we will tackle in this course, we mostly need to know about the
energy levels a molecule is allowed to occupy. It’s also useful to know a little
about the associated spectroscopies.

You should already know that molecules occupy specific energy levels, the
most familiar example being the energy levels associated with the placement
of electrons in molecular orbitals. In many cases, there are simple expressions
which are at least approximately valid for the energy stored by a molecule
in different types of motion. This is the topic we will study in this lecture.

Our starting point is the separation of molecular energy (ǫ) into different
contributions:

ǫ = ǫtrans + ǫvib + ǫrot + ǫelec.

In this equation, ǫtrans is the translational kinetic energy, i.e. 1
2
mv2 for the

whole molecule; ǫvib is the vibrational energy; ǫrot is the rotational energy
associated with rotations of the whole molecule as a unit; and ǫelec is the
electronic energy, i.e. the energy of the electrons in orbitals. There can be
other terms (e.g. terms associated with intermolecular forces, or even with
non-bonding intramolecular forces in larger molecules), and some terms are
not appropriate in every situation (e.g. the lack of free rotation in solution),
but certainly for molecules in the gas phase, these are the main contributions
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to the energy. These four contributions to the energy are not completely in-
dependent. For example, rotation of a molecule introduces an effective cen-
trifugal force which stretches the bonds and therefore affects the vibrational
energy. However, treating these energy terms as separate is a good starting
point.

2 Spectroscopy

There are many different kinds of spectroscopy, but the underlying principles
are always the same:

• A molecule makes a transition between two energy levels.

• Energy must be conserved.

• One or more photons absorbed or emitted or, sometimes, a change in
the energy of a photon, must account for the change in energy of the
molecule.

In absorption spectroscopy, the only type we will consider here, a photon
is absorbed by a molecule, causing a transition from a lower to a higher
energy level. It follows that the energy of the photon must match a difference
between two energy levels in the molecule, i.e. that Ephoton = ∆ǫ = ǫi − ǫj .
While i and j can represent states which differ in several quantum numbers
(associated with the types of energy discussed above), it is often the case
that just one type of energy has changed. For example, many molecules have
a rotational spectrum which is due, as the name implies, to changes in the
rotational energy.

3 Translational kinetic energy in the gas phase

In the simplest treatment (no intermolecular forces or externally applied
fields, i.e. an ideal gas in a simple container), a molecule in the gas phase is
just a particle in a box. The energy of a particle in a rectangular box can be
decomposed into x, y and z components. The energy levels associated with
the x component are given by

ǫnx
=

n2
xh

2

8mL2
x
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Figure 1: Translational Boltzmann factor for N2 in a 0.1m long container at
298K.

where nx is a quantum number (1,2,3,. . . ), h is Planck’s constant, m is the
mass of the molecule, and Lx is the length of the box in this dimension.
Obviously, similar equations hold in the y and z directions.

Let’s look at the Boltzmann factor (i.e. the term e−ǫ/(kT )) for the x com-
ponent of the translational energy for, say, a molecule of N2 in a 1 L container
at 298K. If the container is a cube, it would have a side of length Lx = 0.1 m.
The mass of an N2 molecule is 4.65 × 10−26 kg. Thus,

ǫnx
= 1.18 × 10−40n2

x,

which gives
f(nx) = e−2.87×10−20n2

x .

Figure 1 shows the Boltzmann factor plotted as a function of nx. Note that
this factor only becomes small for extremely large values of the quantum
number (> 1010). In other words, a very large number of states are accessible
at this temperature.

Suppose that we consider a typical state within the range of likely ener-
gies, say one with nx = 5×109. This would have an energy of 2.95×10−21 J.
Now consider ∆ǫ, the difference in energy between two adjacent energy levels:

∆ǫ = 1.18× 10−40
[

(nx + 1)2 − nx

]

= 1.18× 10−40(2nx + 1) ≈ 2.36× 1040nx.
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For nx = 5 × 109, ∆ǫ = 1.18 × 10−30 J. This is enormously smaller than ǫ
itself, so the energy of a gas molecule in a normal container behaves like a
continuous variable. Another way to see this is to convert the energy level
spacing into a photon wavelength:

λ =
hc

∆ǫ
= 168 km.

This is an enormous wavelength, well beyond the radio wavelength (in the
metre range), again indicating that this difference in energy is negligible.
Accordingly, we would not be able to do the simplest kinds of spectroscopic
experiments (absorption or emission) to study the translational motion of
molecules in a gas.

4 Vibrational energy

Let’s start with the simplest case, that of a diatomic molecule. It has a single
vibrational mode, namely stretching of the bond between the two atoms. In
the harmonic oscillator approximation (treating the molecule as two marbles
connected by a spring), the energy is given by

ǫv = hcν̃

(

v +
1

2

)

. (1)

Here, the quantum number v takes the values 0,1,2,. . . ; h and c are the usual
universal constants; and ν̃ is a constant that depends on the stiffness of the
bond and on the masses of the two atoms.

The energy levels in this case are equally spaced. In fact, they are sepa-
rated by hcν̃. If we wanted to do a simple absorption spectroscopy experi-
ment with a diatomic molecule, we would expect it to absorb photons which
have a multiple of this quantum of energy, representing a change in the vi-
brational quantum number v of 1, 2, 3 or more units. This is indeed what we
observe, although for reasons which you will study in your quantum mechan-
ics course, only heteronuclear diatomics undergo straightforward absorption,
and the intensities for ∆v > 1 are always extremely small.

As you probably know, we find vibrational transitions in the infrared
range, at wavenumbers of a few hundred reciprocal centimetres. This corre-
sponds to photon energies of about 10−20 J. Because the transition energy
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for ∆v = 1 is just hcν̃, vibrational spectroscopy gives us the molecular pa-
rameter ν̃, and thus the full set of vibrational energy levels, at least insofar
as they are well approximated by a harmonic oscillator.

If you work out the relevant Boltzmann factors using the rough value for
∆ǫ given above, you will find that only the ground vibrational state (v = 0)
has a significant population at room temperature.

What happens when we have more than two atoms? In some ways, the
picture isn’t that different. We can still typically treat the vibrational en-
ergy levels as if they obey equation 1, except that we have to have one such
equation for each vibrational mode (each different way for the molecule to
vibrate), each with its own value of ν̃ (unless some of the modes are degener-
ate). How many vibrational modes are there? The answer to that question
depends on the shape of the molecule. If we have N atoms, then there are 3N
ways those atoms can move (3N degrees of freedom, corresponding to the x,
y and z degrees of freedom of each atom). Three of those degrees of freedom
can be associated with the translational motion of the whole molecule. If the
molecule is not linear, then there are three independent rotation axes, and
the molecule also has three rotational degrees of freedom. The rest of the
degrees of freedom are vibrational degrees of freedom, so we have

# of vibrational modes = 3N−{3 transl. modes}−{3 rot. modes} = 3N−6.

For linear molecules on the other hand, there are only two independent ro-
tation axes (both perpendicular to the molecular axis) since rotation around
the molecular axis doesn’t actually move anything. Then we have

# of vibrational modes = 3N−{3 transl. modes}−{2 rot. modes} = 3N−5.

Example 4.1 Water has 3(3) − 6 = 3 vibrational modes.

Example 4.2 Carbon dioxide is a linear molecule, so it has 3(3) − 5 = 4
vibrational modes. Two of the bending modes are degenerate: They
correspond to bending the molecule with the carbon atom acting the
“hinge”. There are two such modes because you can bend the molecule
back-and-forth or up-and-down. They have exactly the same value of
ν̃ because they involve the same motion, just in two different planes.
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5 Rotational energy

From the last section, we already know how to count the number of rotational
modes of a molecule. Unfortunately, the energetics of rotation is not entirely
straightforward, except in a few very simple cases. The only case we will
consider here is that of a linear molecule. Assuming that the molecule is
rigid, which is of course only an approximation given that molecules also
vibrate, the rotational energy levels are given by

ǫJ = BJ(J + 1),

where J is a quantum number which can take the values 0,1,2,. . . ; and B is
a constant which depends on the distribution of mass along the molecular
axis.

Rotation is a kind of angular momentum, and angular momentum in
quantum mechanics is always associated with two quantum numbers, one
for the size of the angular momentum vector, in this case J , and one for
the projection of this vector onto a fixed axis in space, usually called the
z axis, although this is completely arbitrary. This second quantum number
is mJ , and can take any of the values between −J and J . This may sound
familiar. In the hydrogen atom, we have orbital angular momentum quantum
numbers ℓ and mℓ which follow the same relationship. The quantum number
mJ doesn’t affect the energy of a rotating molecule, so this represents a
degeneracy of the energy level J . You should be able to see that the number
of different states corresponding to the energy level J is gJ = 2J + 1.

In rotational absorption and emission, again for reasons you will see in
your quantum mechanics course, only transitions with ∆J = ±1 are allowed.
In an absorption experiment, we would expect to observe transitions with
∆J = 1, for which

∆ǫ = ǫJ+1 − ǫJ = B(J + 1)(J + 2) − BJ(J + 1) = 2B(J + 1).

In rotational spectroscopy, we therefore get a series of lines, each correspond-
ing to a different initial value of J . Again we can use the spectrum to de-
termine a molecular parameter, this time the rotational constant B, which
turns out to usually have values of a few reciprocal centimetres.

We can work out the Boltzmann factors for different values of J for a
typical set of rotational levels of a linear molecule. This time, we need to
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Figure 2: Rotational Boltzmann factors as a function of J for a rigid rotor
with B = 1 cm−1 at 298K.

take the degeneracy of the levels into account. We get

f(J) = (2J + 1) exp

(

−hcBJ(J + 1)

kT

)

.

If we plot the unnormalized distribution f(J) vs J , we get the points shown
in figure 2. This time, we see that many states are populated at room
temperature, although clearly not as many as for the translational motion.

Returning to our spectroscopy experiment, for the same value of B as
we used in figure 2, we would predict that the rotational spectrum would
have lines at 2 cm−1, 4 cm−1, 6 cm−1, and so on or, in energy units, about
4 × 10−23 J, 8 × 10−23 J, 1.2 × 10−22 J, . . . These lines are in the microwave
region of the electromagnetic spectrum.

6 Electronic energy levels

In your other chemistry classes, you will have learned the basics of the molec-
ular orbital theory. You may have noticed that your other professors never
wrote down any equations for the energies of molecular orbitals. That’s be-
cause there aren’t any simple equations for these energies. We will therefore
have to content ourselves with a few simple observations.
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The electronic energy levels are almost always much more widely spaced
than any of the other types of energy levels we have discussed. Electronic
energy transitions are typically observed in the ultraviolet or visible range,
which corresponds to photon wavelengths of a few hundred nm, or energies
in the range of 10−18 J. Consequently, the excited states are almost never
populated at room temperature.

7 Nuclear energy levels

At some point, you will also have discussed NMR, which is based on the
behavior or nuclear spins in a magnetic field. Nuclear spin is also a type of
angular momentum, with a quantum number I. Unlike J , the value of I is
fixed for a given nucleus, so there is no spectroscopy associated directly with
this quantum number. However, in a magnetic field, the energies of states
with different values of mI , the quantum number which specifies the projec-
tion of the spin angular momentum vector onto, in this case, the magnetic
field axis, are different. Specifically,

ǫmI
= −γh̄B0mI ,

where γ is a constant for a given nucleus called the magnetogyric ratio, B0 is
the strength of the external magnetic field, and h̄ = h/(2π). Typical values
of γ are around 108 T−1s−1. (T is the abbreviation for the Tesla, the SI unit
of magnetic field strength.)

Being a type of angular momentum, I behaves like all other types of
angular momentum. In particular, mI can take any value between −I and
I, in increments of 1. For a spin-1

2
nucleus like 1H or 13C, I can be either −1

2

or 1
2
, which leads to the “spin-flip” picture of NMR you have probably seen.

Many nuclei have a spin other than 1
2
, notably 2H and 14N, both of which

have I = 1. These nuclei have three nuclear spin states, mI = −1, 0 and 1.
For reasonable magnetic field strengths, you can verify the following:

• The splitting between adjacent energy levels corresponds to radiofre-
quency photons.

• There would be very little difference in population between these energy
levels at room temperature.
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Type of energy Spectral range

Electronic UV/visible
Vibrational infrared
Rotational microwave
Nuclear spin radiofrequency
Translational none

Table 1: Some types of molecular energy, in order of energy level spacing
from largest to smallest, along with the corresponding spectral range in which
transitions can be observed. Note that NMR requires a magnetic field, unlike
the other spectroscopies mentioned here.

8 Summary

Table 1 shows the types of energy we have considered here placed in order
of energy level spacing. It is useful to remember this order since a number
of properties of interest to us are related to it. For example, the larger the
energy gap between two states, the smaller the population of the upper state
will be, so this order informs us about the number of excited states which
are likely to be populated, with more at the bottom of this table and fewer
at the top.
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