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1 State-to-state transitions and the master equation

In transition state theory, we assumed an equilibrium between the transition state and re-
actants. Another way to express this approximation is that we are assuming that the Boltz-
mann distribution governs the relative populations of all the states right up to the transition
state. In RRK theory, we assumed rapid equilibration among the vibrational modes of a
molecule. In both cases, it’s not entirely whether our approximations are physically rea-
sonable. When we want to study such questions, we have to think about the kinetics of
transitions between quantum states of a molecule, which we call state-to-state transitions.
These transitions can occur spontaneously (as is assumed to occur for the vibrational states
in RRK theory), or they can be caused by collisions. We can study these questions in a very
detailed way in quantum dynamics simulations, or in various kinds of experiments involving
crossed molecular beams. These options provide very complete information on the state-to-
state transitions, but are correspondingly resource-intensive. A middle ground is provided
by the master equation, a set of rate equations for the probability that each state is occu-
pied in any given molecule.1 We can incorporate more or fewer details in a master equation
treatment, which makes the approach flexible. In some cases, we can even solve the master
equation directly, while in others we have to resort to numerical solutions.

For the moment, let’s focus on a very simple system. Suppose that we have a gas of
molecules X with quantum states labeled by a quantum number v. There could of course
be many quantum numbers. The point is that we can label individual quantum states, or
perhaps just energy levels if the quantum states are degenerate and we have no reason to
distinguish between degenerate states. The transitions between quantum states are modeled
as a set of chemical reactions:

X(v)
kv→v′

kv′→v

−−−⇀↽−−− X(v′).

The rate constants kv→v′ are called state-to-state rate constants. In general, they depend
on the temperature, and they can depend on, for example, the concentrations of various

1The master equation is sometimes said to describe the population of a state. This causes problems in

interpretation if the population is small, while the probabilistic interpretation always works.
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species in the gas if collisional processes are important. We write down one rate equation
for each state. The rate equation for pv, the probability of occupation of state v, includes
terms for all the different ways that this state can gain or lose in probability. Specifically,

dpv

dt
=

∑

v′ 6=v

[kv′→vpv′ − kv→v′pv] . (1)

The term ‘master equation’ refers to the full set of these rate equations. The first term in the
square braces represents a gain in probability of state v due to transitions from state v′. The
second term represents a loss of probability due to transitions from state v to state v′. The
equation for pv contains terms for each state to which or from which direct transitions with
state v are possible. There is one of these rate equations for each state of the system. It is
not at all unusual for master equations to consist of hundreds or even thousands of equations,
each of which may contain just a few terms, or sometimes dozens of terms. Deciding which
terms to include and which to leave out usually requires some physical insight, and is the
major determinant of how accurate a particular master equation treatment will be in given
circumstances.

If you’re wondering about the physical basis of the master equation, imagine multiplying
equation 1 by N , the total number of molecules in a large ensemble. Since Npv = Nv, the
number of molecules in state v, you can see that equation 1 becomes

dNv

dt
=

∑

v′ 6=v

[kv′→vNv′ − kv→v′Nv] ,

which is the mass-action rate equation for Nv, provided the ensemble is sufficiently large
that we can treat the number of molecules in each state as a continuous variable. Thus,
the master equation gives normal mass-action kinetics in the limit of large N . The master
equation is therefore equivalent to a mass-action model for the state-to-state transitions.

2 The Landau-Teller model

In order to solve the master equation, we need to know the state-to-state rate constants.
These can either be obtained from experiments or, more often, they derive from some physical
model of the excitation/deexcitation processes. The predictions of the master equation for
a particular model can then be compared to experiment, which then tells us whether or
not the model is an accurate one for a particular situation. Whether the model agrees or
disagrees with experiment, we will then have learned something about the processes which
cause molecules to gain or lose energy.

Here, we will look at the vibrational relaxation of a gas of harmonic oscillators. In this
case, v represents the vibrational quantum number. For harmonic oscillators, collisional
energy transfer obeys the selection rule

∆v = ±1. (2)

We also assume that
kv→v−1 = vk1→0, (3)
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i.e. that the probability of deexcitation is proportional to the quantum number v. These
two assumptions together as known as the Landau-Teller model. Note that equations 2
and 3 are not arbitrary, but can be derived from first-order perturbation theory of harmonic
oscillators.

For the Landau-Teller model, the master equation becomes

dpv

dt
= kv+1→vpv+1 + kv−1→vpv−1 − kv→v+1pv − kv→v−1pv, (4)

for v > 0, and

dp0

dt
= k1→0p1 − k0→1p0. (5)

We have one equation of the form 4 for each value of v > 0. For a harmonic oscillator, there
is no maximum value of v, so the master equation in this case is in fact an infinite set of
differential equations. Don’t let that discourage you.

At equilibrium, equation 5 gives

k1→0p1 = k0→1p0. (6)

For v > 0, the equilibrium condition is

kv+1→vpv+1 + kv−1→vpv−1 = kv→v+1pv + kv→v−1pv. (7)

If we set v = 1 in equation 7 and use equation 6, we get

k2→1p2 = k1→2p1.

We can then use this equation in the equilibrium condition for v = 2, and find that a similar
equality holds for the 2 ⇀↽ 3 transitions, and so on. Thus, in general,

kv+1→vpv+1 = kv→v+1pv.

This is a detailed balance condition. It says that at equilibrium, every individual exci-
tation/deexcitation pair is itself in equilibrium. Rearranging this equation, we get

kv→v+1

kv+1→v
=

pv+1

pv
.

We know that the equilibrium energy distribution is a Boltzmann distribution. Therefore

pv+1

pv
= e−∆ǫ/(kT ) = e−hν/(kT )

≡ α,

where ν is the frequency of the oscillators. Thus,

kv→v+1 = αkv+1→v.
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Now using the Landau-Teller assumption 3, we get kv+1→v = (v + 1)k1→0 and

kv→v+1 = α(v + 1)k1→0. (8)

Thus in the Landau-Teller model, if we specify any one of the state-to-state rate constants,
all the others are determined through equations 3 and 8. If we substitute these equations
into the Landau-Teller master equation (4 and 5), we get

dp0

dt
= k1→0p1 − αk1→0p0,

= k1→0 (p1 − αp0) ;

and, for v > 0,

dpv

dt
= (v + 1)k1→0pv+1 + αvk1→0pv−1 − α(v + 1)k1→0pv − vk1→0pv

= k1→0 [(v + 1)pv+1 + αvpv−1 − α(v + 1)pv − vpv] .

Note that k1→0 is a common factor in each equation of the master equation. This rate
constant therefore just sets the relaxation rate. To see this, rewrite

dpv

d(k1→0t)
= (v + 1)pv+1 + αvpv−1 − α(v + 1)pv − vpv.

Then define the rescaled time
τ = k1→0t

such that our rate equations for the pv’s become

dp0

dτ
= p1 − αp0, (9)

dpv

dτ
= (v + 1)pv+1 + αvpv−1 − α(v + 1)pv − vpv. (10)

Physically, using τ instead of t just corresponds to changing our units for time to multiples
of 1/k1→0. Note that our equations now just depend on a single parameter, namely α. As
an illustration, imagine that we take an initially cold system (with p0 = 1 and pv = 0 for
all other values of v) and do a temperature jump at τ = 0 to α = 0.8 ( hν

kT
≈

1
5
). Then the

master equation will show us how the equilibrium Boltzmann distribution is approached.
There’s one little catch: We can’t solve an infinite set of differential equations.2 One way to
deal with this is to include all the equations up to some vmax that is large enough so that the
probability of that and higher states is negligible, then set pvmax+1 = 0 to close the system
of equations.3 The results of this calculation are shown in figure 1.

2By this I mean that it can’t be done numerically, although it is sometimes possible to obtain analytic

solutions in special cases.
3There are other ways to deal with this problem. For instance, we can set the terms in dpvmax

/dt that

correspond to transfer in and out of state vmax + 1 equal to zero. This is in some ways a better solution

since it guarantees conservation of probability, but in practice, if vmax is large enough and the calculation

isn’t too long, it doesn’t make any difference.
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Figure 1: Time evolution of the probability distribution for the Landau-Teller model with
α = 0.8. The differential equations were integrated with a vmax of 50 and checked with
vmax = 200. The differences between the two calculations are negligible on the scale of this
figure.
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3 Other types of master equations

The concept of a master equation is very general. People use this term to describe any
system where the probability distribution for a set of discrete states is governed by a set of
differential equations representing transfer between these states. Master equations are used
particularly when there is a “ladder” of states to climb. Here are some examples:

• Chemical reactions can be treated using the chemical master equation. In this
case, the states are the possible compositions of the system (expressed in numbers of
molecules). For example, in a reaction A ⇀↽ B, it is enough to know the number of
molecules of A since we can then calculate the number of molecules of B given the
total number of molecules present. The states are therefore NA = 1, 2, 3, . . . , Ntotal.
The chemical master equation is a set of rate equations for the probabilities p(NA, t).
This idea can be generalized to arbitrary mechanisms. The chemical master equation
is particularly useful for describing small chemical systems (e.g. those arising when
describing the biochemistry of living cells).

• Master equations have been used to describe polymerization reactions in a few different
ways:

– The polymerization of a single molecule can be described if we write equations
for the evolution of the probability that the polymer has n monomers at time t.

– The states can also be the number of polymers containing n monomers. This case
is a specialized version of the chemical master equation.

Exercises

1. Show that the Boltzmann distribution of a harmonic oscillator can be written in the
form pv = αv(1 − α).

2. Verify that the Boltzmann distribution is an equilibrium solution of equations 9 and
10.
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