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1 The lattice model of polymer solutions

In the last note, we looked at the lattice model of small-molecule solutions. We now turn
to polymers, using the same machinery. The lattice theory of polymer solutions is known
as Flory-Huggins theory. In many ways, you will find this theory similar to the small-
solute case, except that the statistics are a little more complicated given that a polymer is
a connected entity.

Figure 1 shows a lattice model of a polymer. Each filled circle represents a chain seg-
ment, a piece of the polymer that is about the same size as a solvent molecule. A chain
segment is not necessarily a monomer. In fact, for many polymeric materials, a chain segment
will be smaller than a monomer. A polymer is taken to be made up of νs chain segments (on
average). The value of νs can be estimated as the ratio of the molar volumes of the polymer
and solvent.

As in the small-molecule case, the solvent is assumed to have a coordination number z.
Recall again that the flat illustration of figure 1 is only an aid to visualization and that,
in general, the lattice will be three-dimensional, and may have a non-cubic geometry (e.g.
it could be a hexagonal close-packed lattice). Neglecting the ends of a chain, which, for
long polymers, represent a tiny minority of segments, a linear polymer segment makes z− 2
contacts with lattice sites to which the segment is not bonded.

Another key assumption in the present note is that all the monomers are the same. There
is therefore no energetic difference between placing one monomer or another in contact with
the solvent. That being the case, there are only two significant possibilities to consider:
Either the polymer is well solvated, i.e. it assumes a more-or-less random conformation in
the solvent, or it doesn’t dissolve at all. In the next lecture, we will talk about a class of
polymers for which this is not true, namely proteins.
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Figure 1: Lattice model of a polymer. The open circles represent solvent molecules. The
filled circles connected by bonds represent the polymer. Each filled circle is a chain segment,
a piece of the polymer (not necessarily a monomer) whose size is about the same as that of
a solvent molecule.

2 Enthalpy of solution

The derivation of the enthalpy of solution for a polymer is extremely similar to that for a
small-molecule solution. There is an energy difference of

∆ε = ε12 −
1

2
(ε11 + ε22)

per solute-solvent (i.e. polymer-solvent) contact made. The derivation of this equation is
about the same as before, except that we have to consider one polymer segment and its
neighbors rather than a small solute molecule.

We now ask how many solute-solvent contacts there are in the solution on average. A
given segment has z − 2 neighbors that could be occupied either by solvent or by a non-
bonded polymer segment. If we have N2 polymer molecules, each with an average of νs

segments, and N1 solvent molecules, then the probability that a given lattice point that
does not contain a segment bonded to the segment of interest, is occupied by a solvent
molecule is N1/(N1 + νsN2− 3) ≈ N1/(N1 + νsN2). The −3 in the first part of this equation
accounts for the fact that the segment of interest and its two directly bonded segments
are excluded. Of course, for macroscopic systems, this term is negligible. Since there are
z − 2 non-bonded sites adjacent to any segment (neglecting the ends of the polymer) and
there are νsN2 segments in total, the total number of solute-solvent contacts should be
(z − 2)νsN2N1/(N1 + νsN2) = (z − 2)N1νsN2/(N1 + νsN2) = (z − 2)N1φ2, where φ2 is the

2



volume fraction of the polymer:

φ2 =
V2

V1 + V2

=
νsN2

N1 + νsN2

in the lattice model since each polymer segment or solvent molecule occupies the same volume
(one lattice site).

The enthalpy of solution is then simply the number of solute-solvent contacts times the
enthalpy change per contact, or

∆solH = (z − 2)N1φ2∆ε.

This is essentially identical (give or take the factor of z − 2 instead of z) to the van Laar
equation. The same factors which affect the enthalpy of solution for small molecules are thus
important to the enthalpy of solution of polymers. One qualitative difference is the size of
φ2: It takes a lot of small solute molecules to make the solute volume fraction significant, but
relatively few polymer molecules due to the large sizes of polymer molecules. If we compare
two solutes with similar positive values of ∆ε, one of which is a small molecule and one a
polymer, the polymer may be only sparingly soluble while the small molecule has moderate
solubility due to this difference.

3 Entropy of solution

The entropy of solution can have several components. One component, perhaps the obvious
one and the one we will focus on here, is the conformational entropy, i.e. the entropy
associated with the different possible arrangements of the polymer in solution. There can also
be entropy associated with the movements of parts of the polymer other than the “backbone”
if the polymer has significant side chains, and these entropy terms can be different between
the pure and solvated polymer. If, for instance, the side chains are locked in position in the
pure polymer and are free to move in solution, the theory presented here will underestimate
the entropy of solution, and thus the solubility of a polymer. In many cases though, these
effects are relatively small compared to the conformational entropy.

There is another issue of significance in polymer science which doesn’t arise in the small-
molecule theory. When we calculated the entropy of solution in the small-molecule case,
because the lattice model only allows one microstate for the segregated state, we had ∆solS =
Smixture − Ssegregated = Smixture. If the solid polymer is crystalline, this relationship can be
approximately true for polymer solutions as well. Even crystalline polymers are generally
not perfectly crystalline and will usually have amorphous regions (figure 2). In fact, we often
characterize polymers in terms of their percent crystallinity, which is rarely more than 90%
and can be substantially lower. Some solid polymers in fact exist in an essentially entirely
amorphous state, which can be either a glass (hard) or a rubber (soft).1 An amorphous
polymer would have a significant entropy, which would then reduce the entropy of solution

1Most amorphous polymers go through a phase transition between a glassy and a rubbery phase at some
specific temperature, so these are not categories of polymers but categories of behavior.
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Figure 2: Schematic representation of a polymer with a high percent of crystallinity. The
crystalline regions consist of orderly rows of polymer strands. These strands can be joined
by turns or by amorphous strands.

and make these polymers less soluble than crystalline equivalents. The Flory-Huggins theory
describes the solubility of an amorphous polymer. In a lattice model, there is no distinction
between an amorphous solid polymer and a liquid polymer, so the theory also applies to
solutions made from polymer melts.

We want to count the number of different ways we can put N2 polymer molecules, each
of which has νs chain segments, in a lattice with N0 = N1 + νsN2 sites. The remaining sites
will of course be filled with the solvent molecules. Suppose that we have already placed i
polymer molecules in the lattice. Let ξi+1 be the number of different ways we can place the
(i + 1)st polymer molecule in the lattice. We calculate ξi+1 by considering each segment in
turn. Since the first i polymers occupy νsi sites, there are N0−νsi ways we can place the first
segment. The probability that any given neighboring site to the first segment is unoccupied
is p0 = (N0 − νsi − 1)/N0 ≈ (N0 − νsi)/N0. Since there are z neighboring sites, on average
there are p0z different ways we can place the second segment. The second segment has z− 1
neighbors, excluding the neighboring site occupied by the first segment. The probability that
any given one of these z − 1 neighboring sites is unoccupied is p1 = (N0 − νsi− 2)/N0 ≈ p0,
so the number of different ways to place the third segment is approximately p0(z − 1). This
same reasoning, with the same probability p0 that neighboring sites are empty, applies to
any subsequent segment in our polymer, provided N0 � νs.

2 The number of different ways

2Quite apart from the approximation used explicitly above, p0 is an overestimate of the probability that
an adjacent site is unoccupied since it takes no account of the fact that adjacent sites are more likely to
be occupied by segments from the same polymer than by segments from other polymers because of the
connectivity of the polymer molecules. This can be fixed, but it’s a relatively small correction which doesn’t
improve the fit of the theory to experimental data.
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we can place the νs segments of the (i + 1)st polymer in the lattice is therefore

ξi+1 ≈ (N0 − νsi)p
νs−1
0 z(z − 1)νs−2

≈ (N0 − νsi)p
νs−1
0 (z − 1)νs−1

= (N0 − νsi)(z − 1)νs−1
(

N0 − νsi

N0

)νs−1

= (N0 − νsi)
νs

(
z − 1

N0

)νs−1

.

In the second step, we approximated z(z−1)νs−2 by (z−1)νs−1, which is reasonable provided
z is not too small and νs is reasonably large. Now note that

[N0 − νsi]!

[N0 − νs(i + 1)]!
= [N0 − νsi][N0 − νsi− 1] . . . [N0 − νs(i + 1) + 1]

≈ (N0 − νsi)
νs

to the same level of approximation as we used to replace p1, p2, . . . by p0. Thus we have

ξi+1 ≈
[N0 − νsi]!

[N0 − νs(i + 1)]!

(
z − 1

N0

)νs−1

,

or

ξi ≈
[N0 − νs(i− 1)]!

[N0 − νsi]!

(
z − 1

N0

)νs−1

. (1)

The number of ways of placing all N2 polymer molecules in the lattice is

W =
1

N2!

N2∏
i=1

ξi.

The factor of 1/N2! arises because our expression for ξi assumes that we are placing the
polymers into the lattice one after the other. Since the solution process is not ordered, we
have to divide by the number of permutations of the N2 molecules. If we substitute equation
1 into W , we can separate the product into two terms:

W =
1

N2!

N2∏
i=1

[N0 − νs(i− 1)]!

[N0 − νsi]!

 N2∏
i=1

(
z − 1

N0

)νs−1


=
1

N2!

(
z − 1

N0

)N2(νs−1)
N2∏

i=1

[N0 − νs(i− 1)]!

[N0 − νsi]!

 .

The remaining product can be evaluated by expanding the factorials. In the equation that
follows, the terms collected together in braces each represent one term in the product:

N2∏
i=1

[N0 − νs(i− 1)]!

[N0 − νsi]!
= {N0(N0 − 1) . . . (N0 − νs + 1)}

× {(N0 − νs)(N0 − νs − 1) . . . (N0 − 2νs + 1)}
× . . . {. . . (N0 −N2νs + 1)}

=
N0!

(N0 −N2νs)!
.
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W is therefore

W =
N0!

N2!(N0 −N2νs)!

(
z − 1

N0

)N2(νs−1)

=
(N1 + N2νs)!

N1!N2!

(
z − 1

N1 + N2νs

)N2(νs−1)

.

The conformational entropy is Sc = k ln W . Using our expression for W and simplifying, we
get

Sc = k
{
N1 ln

(
N1 + N2νs

N1

)
+ N2 ln

(
N1 + N2νs

N2

)
+ N2(νs − 1) [ln(z − 1)− 1]

}
. (2)

The entropy of solution is given by

∆solS = Sc − Sp,

where Sp is the entropy of the pure polymer, since the entropy of the pure solvent is zero in
the lattice model. We can easily get the entropy of an amorphous polymer (or of a molten
polymer) from equation 2 by setting N1 = 0:

Sp = kN2 {ln νs + (νs − 1) [ln(z − 1)− 1]} .

The entropy of solution is therefore, after a small rearrangement,

∆solS = k
{
N1 ln

(
N1 + N2νs

N1

)
+ N2 ln

(
N1 + N2νs

N2νs

)}
.

This equation can be rewritten in terms of the volume fractions of the solvent and polymer:

∆solS = −k (N1 ln φ1 + N2 ln φ2) ,

of, if you prefer to use moles,

∆solS = −R (n1 ln φ1 + n2 ln φ2) .

Although this equation is identical in form to that derived for small molecules, there is an
important difference. For small molecules, φi ≈ Xi. For polymers, this is of course not the
case. This leads to large deviations from ideal behavior for polymer solutions, as observed
for instance in vapor pressure measurements where we find large deviations from Raoult’s
law.
Exercises

1. A classic demonstration involves dissolving packing peanuts, which are made from ex-
panded polystyrene, into acetone. A huge amount of polystyrene will dissolve in ace-
tone. Acetone has a density of 0.79 g/cm3 and a molar mass of 58.08 g/mol. Polystyrene
has a density of 1.05 g/cm3. A particular sample of polystyrene has an average molar
mass of 3.5 kg/mol. Suppose that we dissolve 100 g of polystyrene in 100 g of acetone.
What is the entropy of solution?

2. Suppose that we have a solvent for which z = 8 and V1,m = 200 mL/mol, and a polymer
with V2,m = 5000 mL/mol and an average molar mass of 20 kg/mol. The interaction
energy per contact is ε = 500 J/mol. What is the solubility, in g/L, of the polymer in
this solvent at 25◦C?
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