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1 Isomerization reactions as a test of theories of uni-
molecular reactions

Gas-phase unimolecular reactions have played a pivotal role in theoretical chemical kinetics
because they are, on the surface at least, so simple. And yet, it is surprisingly difficult to
reconcile theory and experiment, even for these simplest of chemical reactions. It would
also seem that isomerization reactions would be particularly simple since the reactants and
products are similar in size and complexity. In this case, we would expect that collisional
activation and deactivation would be similarly effective, whether the reactant collides with
another molecule of reactant or with the product, or indeed with an activated reactant
molecule. In this case, the Lindemann mechanism reads

ka1
A+X = A" +X,
k-1
ko
A* — P,

where X can be either A, A* or P. Clearly, [X] = ag is a constant, with ay the initial
concentration of A. Applying the steady-state approximation, we get a reaction rate

v = M[A]_

k_1a0 + ]{72

In other words, we should observe first-order behavior, with an effective rate constant £k that
depends on aq as follows:

k1k2a0
e (1)
]{3_1(L0 + ]{32
If we take the reciprocal of this equation, we have
I kg 1
k B ]{31]{72 ]{71&0.
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Figure 1: Reciprocal plot of the effective first-order rate constant vs initial pressure for the
isomerization of 3-methylcyclobutene to trans-penta-1,3-diene (Frey and Marshall, Trans.
Faraday Soc. 61, 1715, 1965).

A plot of k1 vs ay* should therefore give a straight line. Figure 1 shows some typical data
taken over a large range of initial pressures of the reactant, in this case 3-methylcyclobutene.
The plot is clearly not linear over the whole range of initial pressures. While the Lindemann
mechanism explains some features of the kinetics of unimolecular reactions, it’s clearly miss-
ing something too.

2 RRK theory

In order for a molecule to undergo a particular reaction, it’s not good enough for the molecule
to have enough total energy. The energy has to be stored in the appropriate normal mode,
i.e. the reactive mode discussed in the notes on transition-state theory. Implicit in the
Lindemann mechanism is the idea that a collision either puts energy in that one specific
mode, or it doesn’t. There is no allowance made for internal redistribution of energy. In
a sufficiently complex molecule, the probability of a collision putting enough energy in a
specific one of the 3N — 6 normal modes must clearly be very small, and yet there is no
particular trend toward lower unimolecular rate constants with increasing molecular size.
Internal redistribution must therefore be important.

In the late 1920’s, Rice and Ramsperger and, independently, Kassel, proposed two similar
theories that extended the Lindemann treatment to include internal redistribution of energy.
While the basic ideas of these two theories were very similar, there were some differences,



and it is really Kassel’s version which has survived. Nevertheless, the theory is generally
known as RRK theory, in honor of these three scientists.
The starting point of RRK theory is a slight elaboration of the Lindemann mechanism:

ky
A+X = A" +X,
k_1
koa kt
A* — At S P.

Here, X can be any molecule in the system (reactant, product, inert gas, etc.) that can
collisionally activate A. A% is the transition state of the reaction. The idea behind writing
the mechanism this way is that while A* may have enough energy to reach the transition
state, that energy may need to flow from several normal modes into the reactive normal
mode in order for the transition state to be reached, and thus for the reaction to occur. This
takes time, so it’s treated as a rate process.

The rate constant k* represents the very rapid process associated with the reactive mode.
Given that k% is much larger than any normal rate constant, the formation of the transition
state is rate limiting for the conversion of A* to product (not unexpected, of course). Ac-
cordingly, the Lindemann mechanism ks = ko, from the RRK treatment. We can apply the
steady-state approximation to the concentration of A*. We get

kaa = KHAT/[A7]. (2)

Suppose that A* has energy £*. We will consider the distribution of values of ¢* later.
RRK theory assumes that energy moves rapidly between vibrational modes. That being the
case, at any given time, the ratio [A*]/[A*] is equal to the probability p* that the minimum
energy required for the reaction to occur, £*, is localized in the correct normal mode in a
molecule with total energy *. The next assumptions we make are that the normal modes
are harmonic and that they all have the same frequency. Then we can write €* = n*hr and
et = nthy. Our question about the probability of energy localization in the reactive mode
becomes one about the probability that at least nt quanta are localized in the reactive mode
out of a total of n* quanta. Let the number of normal modes of the reactant be s. The
number of different ways of putting n* quanta in s normal modes is

(n*4+s—1)!

Wtotal = m

If I want one particular mode to contain at least n* quanta, then we have n* —n! quanta to
place randomly in the s normal modes. There are

W — (n* —nt+s—1)
(n*—nh)l(s —1)!

different arrangements. The probability that at least n* quanta are in the reactive mode is

therefore
i Wt (n* —nf4+s—1)n"!

" Wi (n" —nb)l(n* +5— DI’

p
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The number of quanta required to reach the transition state is large, and it is likely that there
will be many more quanta of vibrational energy stored in the molecule than the minimum
in order for there to be a reasonable probability that the reactive mode contains n of them.
Each of the terms in p* is therefore a factorial of a large number, to which we can apply
Stirling’s approximation. After doing this and cancelling some terms, we get

Inp* = (n*—n*+s—1)In(n*—n*+s—1)+n* Inn*—(n*—n*) In(n*—n*)—(n*+s—1) In(n*+s—1).

Again, the number of quanta stored in an activated molecule is large. In particular, it should
be much larger than s. If we take s — 1 = x to be a small quantity, then both the first and
last term of this equation are of the form f(x) = (a+z)In(a+z). The first two terms of the
Taylor series of this function are f(z) ~ alna+ z(Ina + 1). If we apply this approximation
to the first and last terms of Inp* and cancel terms, we get

Inpt = (s — 1) In(n* —n*) — (s — 1) Inn",

; n* —nt\ !
pt= - :
n

Because of the assumption that all the normal modes have the same frequency, n* and nt
are proportional, respectively, to €* and ¥, so we can also write

% i s—1
g —¢€
g

Since pt is the ratio of [A*] to [A*], equation 2 becomes

¥ s—1
by = kyy = Kt o\
6*

This equation gives us the rate constant ko as a function of the total energy of the molecule
e*. Of course, different amounts of energy will be gained in different collisions, so not every
molecule has the same energy after collisional activation.

Our next task is to figure out the distribution of energies of the molecules caused by
collisional activation. Here, we treat the normal modes as classical oscillators that can hold
any amount of energy. The Boltzmann distribution in this case gives us the probability that
the energy of a particular oscillator, say oscillator n, is between ¢ and ¢ + de as

or

1
Ple<en<e+de) = 1 e~/ *D) e,

The probability that the energy is greater than ¢ is found by
o0 1 ,
Pe, >¢)= = o /KD) gt =g/ (KT)
(e €) /8 T e g =e

Now suppose that we have two oscillators with a total energy of at least . Say that one of
them has an energy between £¢ and €9+ dgg. Then the other has an energy of at least ¢ — g¢.
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The probability of the latter is e~(¢=20)/(*T) " The probability of the former is %6_50/ *T) e,
The probability that both are simultaneously true is the product of these two probabilities.
To get the probability that two oscillators have an energy greater than ¢, we integrate this
product over all possible values of 5 and add the probability that the first oscillator has
energy greater than ¢ (since our integral assumes that it has energy less than or equal to
this total):

: 1
P ei>e) =P = /0 e—(e—eo>/(kT>k_T =20/ (KT) gy 4+ o=/ (KT) — ( kiT n 1) o</ (kT)

If Py(e) is the probability density for the sum of the energies of the two oscillators, then

P2> = / Pg(&f/)déf/.
By the fundamental theorem of calculus, we have

dP.
Py(e) = > _ e~e/(kT)

de (kT)?

since lim,_,, P2(¢) = 0. We can repeat this trick, using the probabilities that two oscillators
have energy £y and that a third has an energy greater than € — ¢, then repeat it again, and
again, ... The details are a bit grungy, but the final result is simple: The probability that s
oscillators have an energy between ¢ and € + de is

1 e \s—1 1
Py(e)de = (—) e/ g
e == Gr)  wTe c
Now let’s rewrite equation 1 a little:
o — (Bu/k1)kaao (3)

a0+k2/k_1 '

ki/k_y is the equilibrium constant for the first reaction in the Lindemann mechanism, i.e.
ki/k_1 = [A*]/[A]. If we interpret A* as being an energized version of A with energy between
e* and €* + de*, then k;/k_; is the probability that, through random collisions, a molecule
of A will have an energy in this range. Ps(¢*) is therefore the probability density we set out
to calculate.

If we substitute Py(¢*)de* for ki /k_; along with our final expression for ky(¢*) into equa-
tion 3, we get the effective rate constant corresponding only to molecules with energy in the
range €* to €* 4+ de*. In order to get the rate constant for molecules of any energy greater
than the minimum, *, we have to integrate this expression over all values of ¢:

%\ s—1 % s—1
L (N s (N,
k_/%(s—n! kT ) kT = Od*

T .
i e —¢
ag + ]fi < o ) /1{3_1




This integral can’t be evaluated analytically. It can be evaluated numerically for given
values of the constants. Reasonable agreement with experiment is obtained if we take s to
be about half of the total number of vibrational modes of the molecule. The justification for
this adjustment is that only some modes couple efficiently to the reactive mode in a typical
molecule. Note however the word “about” in the above passage. This is a completely ad
hoc adjustment, and there is no good way to tell ahead of time exactly how many modes we
should include in the calculation. Another problem is the rate constant k*. It is tempting
to set this constant to (e.g.) the value found by the vibrational mode approach to the
reactive mode in transition-state theory, namely k* = kT /h. Unfortunately, this makes the
preexponential factor much too small for many unimolecular reactions. Still, this theory
pointed the way forward.

3 RRKM theory

RRKM theory was developed by Canadian Nobel prize winner R. A. Marcus based on RRK
theory. RRKM theory merges transition-state theory with RRK theory: As in RRK theory,
equation 3 is used to obtain an equation for the rate constant, and k;/k_; is replaced by
a probability distribution P;(¢*)de*. However, the correct probability distribution is used,
considering both the fact that the vibrational modes have different frequencies, and that
rotational modes are coupled to the vibrational modes. Another difference is that transition
state theory is used to obtain an expression for ko(e*) instead of the statistical argument
used in RRK theory. Calculations have shown RRKM theory to be very accurate.



