
Chemistry 4000/5000/7001, Fall 2012,
Assignment 4 Solutions

1. (a) The reduced molar mass of the reactants is

µm =
(
M−1

K +M−1
Br2

)−1

=
[
(39.0983)−1 + (159.808 g/mol)−1

]−1

= 31.413 g/mol−1

≡ 31.413× 10−3 kg/mol.

The relative speed at 600 K is

v̄r =

√
8(8.314 472 J K−1mol−1)(600 K)

π(31.413× 10−3 kg/mol)
= 636 m/s.

To use the equation relating the cross-section to the preexponen-
tial factor, we must convert the preexponential factor to SI units:

Act =
1012 L mol−1s−1

1000 L/m3
= 109 m3mol−1s−1.

The cross-section is therefore

σ =
Act

v̄rL
= 3× 10−18 m2.

This corresponds to a disk of radius rAB =
√
σ/π = 9 × 10−10 m

or 9 Å. This is a very large radius. For comparison, the radius
of a potassium atom is 2.20 Å. The bond length in the bromine
molecule is 2.29 Å. If we add these together, we get an rAB which
is less than half of the value computed from the cross-section. The
cross-section calculated here is therefore not due to a hard-sphere
collisional process. In fact, the large difference in electronegativity
of K and Br leads to a transfer of charge from the atom to the
molecule at large distances. The cation (K+) and anion (Br−2 )
are then attracted to each other by electrostatic forces, which
enhances the rate of reaction. This process is called “harpooning”.
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Figure 1: Reaction profile for the reaction of K with Br2

(The potassium atom is imagined to use its electron as a harpoon
which it uses to reel in the bromine molecule.) The rAB calculated
from the cross-section corresponds to the mean distance at which
this harpooning process occurs.

(b) Since we need to break a bromine-bromine bond and make a K-Br
bond, the change in energy is

∆Um = BDE(Br2)− BDE(KBr)

= 190.33− 378.46 kJ mol−1

= −188.13 kJ mol−1.

We are told in part (a) that this reaction has no activation energy.
Thus, it’s all downhill from reactants to products. The reaction
profile is sketched in figure 1

2



2. (a)

K =
1

2
mv2

and

p = mv

∴ K =
1

2
m
( p
m

)2
=

p2

2m
.

∴ p =
√

2mK.

∴ λ =
h√

2mK

(b) In simple collision theory, we take σ = πR2
AB. Here, we would

assume

RAB = R + λ = R +
h√

2mnK
,

where mn is the mass of the neutron. Thus,

σR = π

(
R +

h√
2mnK

)2

.

(c) µ−1 = m−1
n + m−1

2 . Since mn � m2, m
−1
n � m−1

2 . Therefore
µ−1 ≈ m−1

n or µ ≈ mn.

(d) In processes where neutron-nucleus reactions occur, the nucleus is
almost always stationary (or nearly so) and the neutron is moving
at high speed. Thus, Kr is just the kinetic energy of the neutron.
See my Maple worksheet for the detailed calculation. Also note
that I substituted µ = mn in the equation for the rate constant
right away. The result is

k = 2LR2

√
2πkBT

mn

+
2LπRh

mn

+
Lh2

m
3/2
n

√
2π

kBT
.

(e) Again, I carried out the calculation in my Maple worksheet. The
answer is

k = 1.5× 108 m3 mol−1s−1.
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To get the units, we can analyze any of the terms in the equation
for the rate constant given above. In particular, the middle term
(which doesn’t contain any square roots) gives

mol−1m J s

kg
=

mol−1m (N m) s

kg
=

mol−1m (kg m2s−2) s

kg

= m3 mol−1s−1

(f) The rate constant becomes infinite at small and large T . Proving
that this is so is not easy, but one is tempted to conclude that
the divergence of the cross-section at small K is responsible for
at least one of these limits. Dealing with this properly would
require a study of the asymptotics of the integral defining the rate
constant, which is beyond the scope of this course.
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