
Chemistry 4000/5000/7001, Fall 2012,
Assignment 3 Solutions

1. (a)

hcν̃0 = ~ω0 =
h

2π
ω0

∴ ω0 = 2πcν̃0

(b)

ω0 = 2π(2.997 924 58× 108 m/s)(100 cm m−1)(2990.95 cm−1)

= 5.633 91× 1014 s−1

(c)

Q =

[
1− exp

(
− ~ω0

kBT

)]−1
=

[
1− exp

(
−(1.054 571 73× 10−34 J s)(5.633 91× 1014 s−1)

(1.380 6488× 10−23 J K−1)(293.15 K)

)]−1
= 1.000 000 4

(I don’t know how many significant figures this number really has,
but I just wanted to show that it was just a bit bigger than 1.)

P (v = 0) =
1

Q
exp

(
−~ω0v

kBT

)
=

e0

1.000 000 4
= 0.999 999 6.

(Again, it’s too many significant figures, but the point is to il-
lustrate that the probability that the ground state is occupied is
extremely close to 1 at room temperature.)

(d) See figure 1 for my graph. At low temperatures, Q ≈ 1, meaning
that the ground state is the only one with a significant popula-
tion. Values of Q > 1 indicate that excited states are also popu-
lated. The temperature where we think this effect is “significant”
is somewhat arbitrary. Any temperature between 1000 and 2000 K
would be a sensible answer.
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Figure 1: Q(T ) for the vibrational degree of freedom of HCl

2. We have the equation

p(ε) =
1

Q
g(ε) exp

(
− ε

kBT

)
dε

for the probability density p(ε). This density must integrate out to 1
over the allowed energy region (A), i.e.∫

A

1

Q
g(ε) exp

(
− ε

kBT

)
dε = 1.

Note that the partition function depends only on T , so we can pull it
out of the integral:

1

Q

∫
A
g(ε) exp

(
− ε

kBT

)
dε = 1.

∴ Q =

∫
A
g(ε) exp

(
− ε

kBT

)
dε.

3. The value of the translational partition function answers this question.
The only catch is that we have to do a whole bunch of unit conversions
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in order to get our answer.

m = 2(1.007 825 032 07 u) = 2.015 650 064 14 u

≡ 2.015 650 064 14 g mol−1

(1000 g kg−1)(6.022 141 29× 1023 mol−1)

= 3.347 065 38× 10−27 kg

(This is one of those rare cases where the number of significant digits
in the answer is limited by the number of significant digits in a funda-
mental constant, due in this case to the exquisite accuracy with which
we are able to weigh atoms.)

V =
1.050 L

1000 L m−3
= 1.050× 10−3 m3.

Qtr =
V

h3
(2πmkBT )3/2

= (1.050× 10−3 m3)(6.626 069 57× 10−34 J s)−3

×
[
2π(3.347 065 38× 10−27 kg)(1.380 6488× 10−23 J K−1)(293.15 K)

]3/2
= 2.834× 1027.

Needless to say, this is a truly colossal number.

4. The mass of a deuterium molecule is approximately 4 u, about twice as
much as the mass of an ordinary hydrogen molecule. Since Qtr depends
on m3/2, the number of translational levels accessible should increase
by a factor of 23/2 ≈ 2.828, so the number of translational states should
be approximately (2.828)(2.834 × 1027) = 8.017 × 1027. This happens
because the particle-in-a-box energy levels depend inversely on m, i.e.
the levels shift to lower energies for larger values of m.
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