
Modelling Biochemical Reaction Networks

Lecture 22:
Somitogenesis and delay-induced oscillations

Marc R. Roussel

Department of Chemistry and Biochemistry



Recommended reading

I Lewis, Curr. Biol. 13, 1398 (2003).



Somites

Human embryo
Source: Gray’s
Anatomy, 20th
edition (public
domain)

I Somites are masses of cells that
develop in rows on each side of
the neural tube in vertebrates.

I Formerly known as primitive
segments

I Somites develop into vertebrae,
ribs and lateral muscles.



Somitogenesis

I Somites are formed from two
rods of tissue to either side of
the neural tube called the
presomitic mesoderm (PSM).

I Somites form in pairs starting at
the anterior (head) end.

I The PSM grows during somite
formation at a rate that roughly
matches the shortening due to
differentiation into somites at
the anterior end.



Somitogenesis

I The clock and wavefront model postulates a biochemical
oscillator (a clock) as well as a boundary between the PSM
and somites (wavefront).

I Several variations on clock and wavefront model explain
somitogenesis somewhat differently.

I One possibility is that the clock only functions at the posterior
end, so cells growing away from this end acquire a fixed phase
(part of the cycle).
This phase is carried with the cells as they are pushed forward
by cell division at posterior end.
Oscillator phase eventually determines the boundaries of a
somite.
Some other factor (e.g. decay of a chemical) determines how
long a group of cells will move away from the tail before they
differentiate into a somite.



The clock

I In zebrafish, a new somite is made every 30min, and the Her1
protein and its mRNA oscillate with the same period.

I Her1 represses the transcription of its own gene.

I Another protein called Her7 behaves similarly.
Knocking out both Her1 and Her7 abolishes organized
somitogenesis.
Knocking out just one of the two produces similar, but less
severe effects.

I Her1, Her7 and their genes and mRNAs could be the key
components of the somitogenesis clock.



A Her1 oscillator model

I For simplicity, consider only Her1 protein (P) and mRNA (M).

Assumptions:
I The ribosome occupies the translation start site

for a negligible time.
I Translation takes time τp.
I Transcription takes time τm and is inhibited by

P.
I Transcription inhibition is rapid, reversible, and

cooperative.

M(t)
k1−→ M(t) + P(t + τp)

P
k2−→

v3(P(t−τm))−−−−−−−→ M(t) v3(P) =
v3,max

1+P2/K2

M
k4−→



Clock equations

M(t)
k1−→ M(t) + P(t + τp)

P
k2−→

v3(P(t−τm))−−−−−−−→ M(t) v3(P) =
v3,max

1+P2/K2

M
k4−→

dP

dt
= k1M(t − τp)− k2P

dM

dt
= v3(P(t − τm))− k4M



Clock equations
A trick to simplify the equations

dP

dt
= k1M(t − τp)− k2P

dM

dt
= v3(P(t − τm))− k4M

I Let m(t) = M(t − τp).

I Take a derivative with respect to t:

dm

dt
=

dM

dt

∣∣∣∣
t−τp

= v3(P(t − τp − τm))− k4m

I Define τ = τp + τm and we have a one-delay problem.



Clock equations

dP

dt
= k1m − k2P

dm

dt
= v3(P(t − τ))− k4m

with v3(P) =
v3,max

1 + P2/K 2

I Reasonable values for parameters (from Lewis, 2003):

k1 = 4.5 min−1 v3,max = 33molecules/min

k2 = 0.23 min−1 K = 40molecules

k4 = 0.23 min−1 τ = 13min



Delay-induced instability

I At large delays, we get oscillations, so this is a successful
clock model.

I At small delays, no oscillations

I The delay destabilizes the steady state, so we call this a
delay-induced instability.



Bifurcation diagram

I Auto can’t do bifurcation diagrams for delay-differential
equations.

I Recall that a simple bifurcation diagram is obtained by
plotting minima and maxima of a solution vs a parameter
value.

I We can get some simple types of bifurcation diagrams in
xppaut, but it requires a lot of setup, planning, and
trial-and-error work.

I For a bifurcation diagram vs τ , add the following line to your
xppaut input file:

aux tau_=tau

This will give you a variable that is equal to τ that you can
actually plot.



Bifurcation diagram

I In the Numerics menu, set the following parameters:

Total: 10000
tRansient: 9000 (We want to make sure that we are looking

at the attractor and not at transient behavior.)
Poincare map: (M)ax/min (Plot only minima and maxima

rather than the entire trajectory.)

Variable: P (Any variable will do.)
Direction: 0 (plots both minima and maxima)
Stop on sect: N



Bifurcation diagram

I In the Viewaxes→2D dialog, set up your axes as follows:

X-axis: tau_ (the auxiliary variable)
Y-axis: P (same variable as in the Poincaré map)
Xmin: 0
Ymin: -100
Xmax: 60 (no larger than the value of Delay in your

input file)
Ymax: 3000

I Click on Graphic stuff→(E)dit curve, edit curve 0, and
change the line type to 0 in the dialog that pops up. This will
plot dots instead of connecting points by lines.

I Click on Graphic stuff→a(X)ex opts, then set X-org to
0. This will turn off plotting of the x axis, which otherwise
interferes with our diagram.



Bifurcation diagram

I Now click on Initialconds→(R)ange and fill in the dialog
as follows:

Range over: tau (the parameter)
Steps: 60 (Start with a smaller value for testing.)
Start: 60
End: 0 (It’s better to start in the limit-cycle regime

and to work toward the bifurcation.)
Reset storage: N (Keeps the data computed in memory for

each τ .)
Use old ic’s: N (When a new value of τ is selected, the

new trajectory will continue from where the old
trajectory left off.)



Bifurcation diagram

I Xppaut will eventually fail, with the following error message:
Cannot zero RHS for max/min - use a variable. This
means that Xppaut has entered a range where there is only a
stable steady state, so there are no maxima or minima to be
found.
Note: If you want to start over, you may get this message for
no good reason, especially with delay equations. If this
happens, just reset the initial data to the default values and
run a single trajectory to reset xppaut.

I Go into the data browser and Write this data set into a file.

I Note the value of τ (i.e. of the auxiliary variable tau_) at
which this data set ends, in this case, 8.



Bifurcation diagram

I Now we want to turn off the Poincaré map: Click on
Numerics→Poincare map→(N)one.

I Also in the Numerics menu, set Total to a smaller value, say
9100, and nOutput to a large value such as 200.

I We’re going to do another range integration to get the steady
state branch:

Range over: tau
Steps: 20
Start: 0
End: 10 (slightly larger value than where limit cycle

ended in case there is bistability due to a
subcritical Hopf bifurcation)

Reset storage: N
Use old ic’s: Y (We want to avoid getting trapped in an

unstable steady state.)



Bifurcation diagram

I You will notice that, past a certain point, the values plotted
fill in between the two branches of the minimum and
maximum from our previous computation. Go into the data
browser and figure out where this happens.
In this case, you will find that P = 161.76 and m = 8.27 up
to and including τ = 7. After that, we start to get different
values for these two variables at each computed point. The
last stable point (at this resolution) is therefore τ = 7. Redo
the calculation with τ = 7 as your upper limit.



Bifurcation diagram

I Click on Graphic stuff→(F)reeze→(F)reeze, and finally
click on Ok without making any changes.

I Go back to the data browser and Load the file containing the
minima and maxima. Click on Restore in the xppaut main
window. Voilà!
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