
Modelling Biochemical Reaction Networks

Lecture 16:
Gene expression and delay-differential equations

Marc R. Roussel

Department of Chemistry and Biochemistry



Back to chemical kinetic theory

I When we say that A + B→ C is an elementary reaction, we
mean that, after some collisions of an A and a B, a transition
state is formed which rapidly leads to the product C.

I The rate constant is determined by two factors:
I how often collisions between A and B occur, and
I how likely A and B are to react once they have collided.



Delayed effects

I Transcription and translation are not elementary processes.

I However, taking transcription as an example, we can talk
about how often transcription factors bind and how likely they
are to initiate transcription.

I There is an additional factor to take into account, namely
how likely transcription is to complete.

I By analogy to conventional chemical kinetic theory, these
factors can be represented by a rate constant.

I However, the product (RNA) only appears after a significant
delay.

I Typical transcription/translation times in bacteria: 1–2min
I Typical transcription times in yeast: 1–3min
I Typical transcription times in multicellular eukaryotes:

5–40 min
I Typical translation times in eukaryotes: 2–4min



Processes with delayed effects

I As an example, consider transcription of DNA to RNA (R) by
RNA polymerase (P). The polymerase binds to a promoter
(binding) site (B) on the DNA where transcription initiation
occurs.

I We can model transcription by a reaction with a delayed
effect:

P(t) + B(t)
kt−→ B(t + τ1) + R(t + τ2) + P(t + τ2)

How to read this reaction: if P binds B at time t, the
promoter is cleared (available for a new round of transcription)
τ1 time units later, and transcription completes, liberating
RNA and the polymerase, τ2 time units after initiation.



Processes with delayed effects
Rate equations

P(t) + B(t)
kt−→ B(t + τ1) + R(t + τ2) + P(t + τ2)

I If we want to model this process in a single cell, we should use
a stochastic model.

I Assume instead that we are interested in the average behavior
over a large number of cells so that we can use rate equations.



Processes with delayed effects
Rate equations

P(t) + B(t)
kt−→ B(t + τ1) + R(t + τ2) + P(t + τ2)

I The rate equations obey the law of mass action except that
initiation and product formation are separated in time.
In other words, the rate of product formation depends on the
rate of initiation at an earlier time:

dP(t)

dt
= −ktP(t)B(t) + ktP(t − τ2)B(t − τ2)

dB(t)

dt
= −ktP(t)B(t) + ktP(t − τ1)B(t − τ1)

dR(t)

dt
= ktP(t − τ2)B(t − τ2)



Delay-differential equations

dP

dt
= −ktP(t)B(t) + ktP(t − τ2)B(t − τ2)

dB

dt
= −ktP(t)B(t) + ktP(t − τ1)B(t − τ1)

dR

dt
= ktP(t − τ2)B(t − τ2)

I These equations are a set of delay-differential equations
(DDEs).

I The solutions depend on the history, i.e. on prior values of the
solution.



Delay-differential equations
Initial function

dP

dt
= −ktP(t)B(t) + ktP(t − τ2)B(t − τ2)

dB

dt
= −ktP(t)B(t) + ktP(t − τ1)B(t − τ1)

dR

dt
= ktP(t − τ2)B(t − τ2)

I The initial condition for a set of DDEs is an initial function:
necessary in order for the right-hand sides to be defined at the
beginning of the integration.

I In this case, we need a vector-valued function f(t) such that

(P(t),B(t)) = f(t) for − τ2 ≤ t ≤ 0

given that, physically, τ2 > τ1.



Delay-differential equations
Initial function

I The initial function is arbitrary, although in some cases, it can
be chosen to reflect a particular type of experiment.

Example: If the promoter (B) is occluded by a
transcription inhibitor until t = 0, a suitable
initial function might be

P(t) = P0 for − τ2 ≤ t ≤ 0

B(t) =

{
0
B0

for − τ2 ≤ t < 0
for t = 0



Delay-differential equations
Knots

I In our example, from −τ2 to 0, the values of P and B are
given by the initial function.

I From 0 to τ2, the values of P and B are computed from the
DDEs, with the history-dependent terms computed from the
initial function.
=⇒ 1st derivative discontinuous at t = 0.

I From τ2 to 2τ2, P and B are computed from the DDEs, with
the history-dependent terms computed from the solution on
t ∈ (0, τ2].
The DDEs govern the dynamics over the entire range
t ∈ (0, 2τ2], but since the first derivative was discontinuous at
t = 0, integrating through t = τ2 introduces a discontinuity in
the second derivative of the solution at this t.

I In general, the n’th derivative is discontinuous at the knot
t = (n − 1)τ2.



Delay-differential equations
Mass conservation in DDEs

I We can think of a delayed term as a pipe: Material goes in
one end, and takes some time to come out the other end.

I The total amount of material in the system at any time
therefore includes material in the pipe.

I The total amount of material can be calculated by imagining
that we can stop all reaction initiations, i.e. dropping all the
corresponding terms in the DDEs.
The remaining (delayed) terms correspond to “flushing out
the pipe”.

I The most convenient time to carry out this operation is at
t = 0 since the concentrations are given by the initial function
before this time.



Delay-differential equations
Mass conservation in DDEs

I In our model, crossing out the initiation terms gives

dP

dt
= (((((((−ktP(t)B(t) + ktP(t − τ2)B(t − τ2)

dB

dt
= (((((((−ktP(t)B(t) + ktP(t − τ1)B(t − τ1)

I Rearrange and integrate:

dP = ktP(t − τ2)B(t − τ2) dt

∴ P(t)− P(0) =

∫ t

0
ktP(ξ − τ2)B(ξ − τ2) dξ

or P(t) = P(0) +

∫ t

0
ktP(ξ − τ2)B(ξ − τ2) dξ



Delay-differential equations
Mass conservation in DDEs

I Since reaction initiations are assumed to have stopped at
t = 0,

Ptotal = P(0) +

∫ τ2

0
ktP(ξ − τ2)B(ξ − τ2) dξ

= P(0) +

∫ 0

−τ2

ktP(ζ)B(ζ) dζ

I Similarly,

Btotal = B(0) +

∫ τ1

0
ktP(ξ − τ1)B(ξ − τ1) dξ

= B(0) +

∫ 0

−τ1

ktP(ζ)B(ζ) dζ



Delay-differential equations
Mass conservation in DDEs

I For the initial function

P(t) = P0 for − τ2 ≤ t ≤ 0

B(t) =

{
0
B0

for − τ2 ≤ t < 0
for t = 0

we get

Ptotal = P(0) +

∫ 0

−τ2

ktP(ζ)B(ζ) dζ = P(0)

Btotal = B(0) +

∫ 0

−τ1

ktP(ζ)B(ζ) dζ = B(0)



DDEs in xppaut

I The delayed value of a variable can be obtained by (e.g.)
delay(P,tau2).

I Initial functions can be specified using the variable(0)
notation, e.g.

P(0)=10+4t
Two problems:

I This sets P(t) for t < 0. The value of P at time 0 may or may
not be set correctly and frequently needs to be corrected inside
xppaut.

I The init notation cannot be used.

I A line like the following must be included in your xppaut
input file:

@ DELAY=1000

The value of DELAY must be at least as large as the largest
delay in the system.



DDEs in xppaut

Important: The numerical integration of DDEs is tricky.
Always try different step sizes and/or methods.


