
Modelling Biochemical Reaction Networks

Lecture 14:
Stochastic theory of reaction kinetics

Marc R. Roussel

Department of Chemistry and Biochemistry



Recommended reading

I Fall, Marland, Wagner and Tyson, section 11.1.6

I Gillespie, J. Phys. Chem. 81, 2340 (1977).



Stochastic theory of well-mixed reactions

I Consider a bimolecular elementary reaction A + B→ C.
I Imagine a random selection of one particular molecule of A,

and one particular molecule of B.
I For this particular pair, there is some probability per unit time

that they will react, called the stochastic rate constant c .
Units: s−1

I Because the system is well mixed and we picked our A and B
randomly, this probability per unit time is the same for any
other (A,B) pair.

I There are NANB different (A,B) pairs.
I The probability that one pair reacts in a short time ∆t (short

enough that the probability of two reactions is negligible) is

cNANB∆t



Stochastic theory of well-mixed reactions
Reaction propensity

I The quantity a = cNANB is called the reaction propensity.
It tells us how likely a reaction is to occur per unit time.
Larger propensities ⇐⇒ faster reactions

I a can always be written as a factor of a stochastic rate
constant and a statistical factor (h) for the number of different
combinations of reactant molecules available to react: a = ch.



Stochastic theory of well-mixed reactions
Statistical factors

Zero-order reaction → A: h = 1
(Inflow or synthesis at constant rate)

First-order reaction A→ B: h = NA

Second-order reaction A + B→ C: h = NANB

Second-order reaction 2A→ B: h = NA(NA−1)
2



Stochastic theory of well-mixed reactions
Stochastic rate constants

I Rate of reaction = number of reactive events per unit time,
usually expressed as an equivalent concentration change per
unit time

I Propensity = probability of a reactive event per unit time

I In the limit of a large number of molecules, and give or take
some theoretical issues we’ll skip over, events/time =
probability/time
[A probability of 0.5 s−1 means that we expect roughly one
reactive event every 2 s, which corresponds to a rate of
0.5 events/s.]

I The stochastic (c) and mass-action (k) rate constants are
therefore related by some unit conversions, and statistical
factors.



Stochastic theory of well-mixed reactions
Stochastic rate constants

Recall: Rate would typically have units of mol L−1s−1.

Zero-order reaction → A: a = c (in events/s)
Get mol L−1s−1 by converting events to moles of
events (dividing by L) and dividing by the volume, so
c = LVk .
Note: The mass-action rate constants are
independent of V , which means that the stochastic
rate constants may depend on V .

First-order reaction A→ B: a = cNA

Divide both sides by L and V to convert to a rate,
and note that NA/(LV ) = [A], thus rate = c[A], so
c = k.



Stochastic theory of well-mixed reactions
Stochastic rate constants

Second-order reaction A + B→ C: a = cNANB

Divide both sides by L and V to convert to a rate,
then convert NA and NB to concentrations, and get
rate = cLV [A][B], so c = k/(LV ).

Second-order reaction 2A→ B: a = c NA(NA−1)
2

Deterministic rates are appropriate when NA is large,
so NA − 1 ≈ NA.
Mass-action rate = k[A]2

Conclude, after a bit of work, that c = 2k/(LV ).



Statistics of chemical reactions

I Suppose that we have r chemical reactions, each with its own
propensity ai , i = 1, 2, . . . , r .

I Define a0 =
∑r

i=1 ai .
I The probability that any given reaction will occur per unit

time is ai .

⇒ If ai is bigger than aj by a factor of (say) 2, then reaction i is
twice as likely to occur as reaction j in a time interval ∆t.

⇒ Reaction i is twice as likely to be the next reaction to occur.
⇒ In general, ai/a0 is the probability that reaction i is the next

one of the r reactions to occur.

I The time before the next reaction occurs is a random variable
with distribution p(τ) = a0e

−a0τ .



Stochastic simulations

I Computers typically have a random number generator that
generates pseudo-random numbers distributed uniformly
between 0 and 1.

I We can generate an exponentially distributed τ (time to next
reaction) by

τ =
1

a0
ln

(
1

r1

)
where r1 is a uniformly distributed random number on (0,1].



Stochastic simulations

I “Line up” the reaction probabilities ai/a0 and then use a
second uniformly distributed random number, r2, to choose
which reaction happens next.
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I Update numbers of molecules based on what reaction
happened, increase time by τ , then recompute the
propensities and start again.



Gillespie stochastic simulations in xppaut

I Capability not documented in all currently distributed versions
of manual

I Set up: set parameters, initial numbers of molecules

I ODE file must contain the following: @ METH=discrete
(unless you use the .dif filename extension)

I Also consider setting large values for BOUND, TOTAL (number
of simulation steps) and NJMP (interval between points
reported in the data file)

I Give equations for propensities
I Use special z=gill(0,a1,a2,...)

I After each step, z(0) contains τ , and z(i) contains 1 if
reaction i occurred, and 0 otherwise.

I Update time variable (can’t be called t) and numbers of
molecules

@

