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Recommended reading

I Fall, Marland, Wagner and Tyson, section 11.1



Describing reactions involving small numbers of
molecules

I Differential equations are appropriate for models involving a
very large number of molecules, where the concentrations can
be treated as continuous variables because a reaction event
that (say) decreases the number of molecules of a particular
species by 1 has an infinitesimal effect on the concentration.

I If, on the other hand, we have only a few molecules of a
certain type, or maybe even a few thousand, a decrease by 1
is a (discontinuous) step change in the concentration.

I Better in these cases to count molecules than to use
concentration



Stochasticity (randomness) in chemical reactions

I By way of illustration, consider a bimolecular elementary
reaction A + B → C.
Suppose that this is the only reaction that occurs at an
appreciable rate in this system.

I In order for A and B to react, they first have to come together.

Boltzmann’s Stosszahlansatz: Due to collisions with other
molecules, the path of a molecule in the gas phase is
essentially unpredictable. Thus, collisions occur at
unpredictable (random) times.
The same is true in solution where frequent collisions
with solvent molecules cause Brownian motion (paths
with randomly directed sharp turns).



Stochasticity (randomness) in chemical reactions

I Molecules often have to collide in a specific orientation to
react, so any rotational motion is an additional source of
stochasticity.

I There is usually a minimum amount of energy required for
reaction (activation energy). Molecules gain and lose energy
in collisions, so the energetic state of the molecules is another
random variable.

I Quantum mechanical factors often determine whether two
molecules that have collided in the correct orientation will
react, and quantum dynamics is intrinsically unpredictable.

Conclusion: The timing of reactive events is a random variable.



Reactions involving small numbers of molecules

I We have two new issues to deal with:
I Molecules as countable entities
I Random reactive events

I Options:
I Find some way to describe the statistical properties of the

system =⇒ Chemical master equation
I Simulate, i.e. generate some random reactive events, knowing

that we will only get examples, called realizations, of the
stochastic process



Dynamics of single ion channels

I The extreme case of a small number of molecules is one
molecule.

I In electrically active cells (nerve cells, cardiac cells, some
secretory cells like pancreatic beta cells), currents are
generated by opening and closing channels that are permeable
to a particular type of ion.

I The openings and closings happen randomly, with rates that
are biased by various factors some of which can be
manipulated experimentally, e.g. the membrane potential.



Dynamics of single ion channels

I The activity of a single channel can be monitored using a
patch clamp.

Source: Theresa Knott, Creative Commons license (http:
//en.wikipedia.org/wiki/File:Patch clamp.svg)

http://en.wikipedia.org/wiki/File:Patch_clamp.svg
http://en.wikipedia.org/wiki/File:Patch_clamp.svg


A model for a single ion channel

I The channel has two states, open (O) and closed (C).

I Random transitions occur between these two states, which we
represent as a conventional chemical reaction:

C
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−−⇀↽−−
k−
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I When the channel is closed, there is a certain probability per
unit time of making a transition to the open state, k+.

I The probability that a closed channel makes a transition to
the open state in time ∆t is therefore k+∆t, provided we
choose a ∆t such that k+∆t is small.

I Similarly, the probability that an open channel makes a
transition to the closed state in time ∆t is k−∆t.



A model for a single ion channel

I The probability that the channel is closed at time t + ∆t is
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
Probability

channel
was closed

at t


+


Probability

channel
was open

at t




Probability
an open channel

closes in ∆t


−


Probability channel

was closed
at t




Probability
a closed channel

opens in ∆t


= PC (t) + PO(t)k−∆t − PC (t)k+∆t



A model for a single ion channel

I Now rearrange:

PC (t + ∆t)− PC (t) = PO(t)k−∆t − PC (t)k+∆t

∴
PC (t + ∆t)− PC (t)

∆t
= k−PO(t)− k+PC (t)

I Take the limit as ∆t → 0:

dPC

dt
= k−PO − k+PC

I Proceeding similarly for PO , we find

dPO

dt
= k+PC − k−PO



Chemical master equation

I The equations

dPC

dt
= k−PO − k+PC

dPO

dt
= k+PC − k−PO

are an example of a chemical master equation.

I They tell us how the probability distribution (PC ,PO) evolves
with time.



Chemical master equation

I We are often interested in the steady state probability
distribution, called the stationary probability distribution.
The stationary probability distribution is the distribution you
expect to see in an experiment that is long compared to the
time it takes to make transitions between the two states (to
be studied below).

I The stationary probability distribution is obtained by solving
the equations dPC

dt = dPO
dt = 0, with the added condition that

the probabilities add up to 1: PC + PO = 1.
In this case, we get

PC =
k−

k− + k+
and PO =

k+

k− + k+



Dwell time

I The dwell time is the average amount of time the system
spends in a given state once it has reached that state.

I To calculate the dwell time in the closed state, imagine that
we have prepared the system such that, at t = 0, the channel
is closed. Thus, PC (0) = 1.

I Since we are only interested in how long the channel stays in
the closed state, we will treat the open state as an absorbing
state.
In other words, we won’t allow transitions back out of this
state.
The master equation simplifies to

dPC

dt
= −k+PC

with solution
PC (t) = e−k+t



Dwell time

I PC (t) is the probability that the channel remains closed at
time t.

I The dwell time is the average time of opening, so we want the
probability that the channel opens between times t and t + dt.

I From the rate equation, this is |dPC | = k+PC (t) dt.

I The probability density p of a variable t is the amount of
probability per unit t.

I The probability density of the opening time is therefore
pO(t) = |dPC |/dt = k+PC (t).



Dwell time

I If we have a probability density p(t), then statistical theory
tells us that the average value of some quantity f (t) is

〈f 〉 =

∫
R

f (t)p(t) dt

where R is the range of the variable t.

I The dwell time in the closed state is the average time to
opening of the channel, so

〈tC 〉 =
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Standard deviation of dwell time

I The standard deviation is

σt =
√
〈t2〉 − 〈t〉2

I For the dwell time in the closed state, we have
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