Modelling Biochemical Reaction Networks

Lecture 9: Glycerol metabolism, Part I

Marc R. Roussel

Department of Chemistry and Biochemistry

University of Lethbridge

Glycerol metabolism

- Glycerol is one of the building blocks of lipids.
- Used as an energy source by conversion to a form that can be injected into the glycolytic pathway:

Flux through a pathway

- Rate at which material "moves through" a pathway
- ► To define a flux, need a "source" and a "sink"
- Options for a source:
 - Constant glycerol
 - Constant rate of addition of glycerol
- Options for a sink:
 - Neglect reversibility of triose phosphate isomerase and make D-glyceraldehyde 3-phosphate the sink
 - Include one or more reactions from glycolysis, the last of which is irreversible (in reality or by assumption)

Questions

- Glycerol is a byproduct of various industrial processes (production of soap, biodiesel, vegetable oil).
- We might want to use it as a feedstock for production of (e.g.) yeast, for baking, brewing/fermenting, or sometimes used as nutritional supplements for cattle.
- What factor(s) limit the flux through this pathway?
- Can we engineer a strain of Saccharomyces cerevisiae that is capable of a higher flux through this pathway?

Glycolysis "payoff phase"

We have to be careful not to "choke" glycolysis, so we should model the relevant part of this pathway, the so-called "payoff phase":

Cosubstrates

- Several reactions have cosubstrates (ATP, ADP, NAD⁺, etc.).
- Treat as constant using typical in vivo values
- ▶ Resource: K. R. Albe et al., J. Theor. Biol. 143, 163 (1990).
- Must know rate law, which depends on order of binding and other details
- Issue can sometimes be ducked, depending on how parameters were measured

Locating enzyme parameters

- We need (a) rate law, (b) K_M for each substrate, and (c) v_{max} or (d) k_{cat} and [E]_{total} (v_{max} = k_{cat}[E]_{total}).
- Preferably need parameters for each enzyme from our target organism
- Useful resource: BRENDA, a database of enzyme kinetic parameters (http://www.brenda-enzymes.org)
 Example: glycerol kinase

Estimating the kinetic parameters of glycerol kinase in S. cerevisiae

- *K_M*(glycerol) = 2 mM [C. C. Aragon et al., J. Mol. Catal. B 52–53, 113 (2008)]
- BRENDA gives values of the turnover number (k_{cat}) and of the specific activity (v_{max}/c_E, where c_E is the concentration of enzyme in g/L)
 - Either way, need enzyme concentration to get v_{max}
 - ► No values given for *S. cerevisiae*

Estimating the kinetic parameters of glycerol kinase in S. cerevisiae

- ▶ It would be unusual to measure a K_M without also obtaining a v_{max} , so go look at Aragon et al. (2008).
 - $v_{max} = 1.15 \text{ U/mL}$
 - ► Methods, section 2.5: "One unit (U) of enzyme was defined as the amount of the enzyme catalyzing the formation of 1 µmol of glycerol-3-phosphate/min at 60°C."
 - $v_{\text{max}} = 1.15 \,\mu\text{mol}\,(\text{mL})^{-1}\text{min}^{-1} \equiv 19.2 \,\mu\text{mol}\,\text{L}^{-1}\text{s}^{-1}$

Problem: Data given at 60°C, not the 20–30°C of industrial processes

- Rule of thumb: Rate constants approximately double for every 10°C increase in temperature
 - v_{max} at 20°C should be about 2⁴ times smaller than at 60°C, or about 1 µmol L⁻¹s⁻¹.

Estimating the kinetic parameters of glycerol kinase in $S.\ cerevisiae_{ATP\ as\ cosubstrate}$

- Issue not addressed by Aragon et al. (2008)
- Assays carried out in presence of a roughly physiological concentration of ATP (2.6 mM, somewhat higher than the 1–2 mM usually found in yeast; Albe et al., 1990)
- Get effective rate law for that concentration of ATP
- Given uncertainties in other parameters, this should be OK.

Estimating the kinetic parameters of glycerol kinase in S. cerevisiae _{Summary}

$$v_{gk} = rac{v_{\mathsf{max}}[\mathsf{glycerol}]}{K_{gk} + [\mathsf{glycerol}]}$$

with

$$v_{max} = 1 \,\mu \text{mol } \text{L}^{-1} \text{s}^{-1}$$

 $K_{gk} = 2 \,\text{mM}$

Next time

- We could continue in this vein, and in some cases we have no other choice.
- Next time: another key resource that allows us to build on other people's work