Modelling Biochemical Reaction Networks

Lecture 7: Numerical integration of ordinary differential equations

Marc R. Roussel

Department of Chemistry and Biochemistry

Recommended reading

▶ Fall, Marland, Wagner and Tyson, section 1.4.1

Ordinary differential equation initial value problems

 An ordinary differential equation (ODE) is an equation of the form

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t)$$

x is a vector describing the state of a system (e.g. the concentrations) and $\mathbf{f}(\mathbf{x}, t)$ is a vector-valued function.

- In an initial value problem (IVP), we are provided with x at some initial time t₀ and want to get x for t > t₀.
- ► A solution of an ODE IVP is a function **x**(*t*) satisfying the equation and the initial condition.
- Very few ODEs have analytic solutions, so we generally need to use approximate numerical integration methods.

Numerical integration of ordinary differential equations

Basic idea: Approximate the derivative as

$$rac{d\mathbf{x}}{dt} pprox rac{\Delta \mathbf{x}}{\Delta t} = \mathbf{f}(\mathbf{x}, t)$$

- ► The continuous solution x(t) is replaced by values of x at a discrete set of times: (t_i, x_i) (i = 1, 2, ...) with x₀ = x(0).
- Need to decide
 - 1. what exactly we mean by $\Delta \mathbf{x}$;
 - 2. how to choose Δt ; and
 - 3. at what \mathbf{x} and t we're going to evaluate \mathbf{x} .

Euler's method

Simplest possible method:

 $\Delta \mathbf{x} = \mathbf{x}_{i+1} - \mathbf{x}_i$ $\Delta t = t_{i+1} - t_i \text{ is usually constant}$ **f** evaluated at \mathbf{x}_i and t_i

$$\frac{\Delta x}{\Delta t} = \frac{\mathbf{x}_{i+1} - \mathbf{x}_i}{\Delta t} = \mathbf{f}(\mathbf{x}_i, t_i)$$

$$\therefore \mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{f}(\mathbf{x}_i, t_i) \Delta t$$

• xppaut example:
$$\frac{dx}{dt} = -x$$
, $x(0) = 1$

•

Runge-Kutta methods

- The problem with the Euler method is that it uses the derivative at a single point and extrapolates from there.
- Many numerical methods calculate the derivative using one or more intermediate points in order to obtain more refined estimates of the average derivative over one time step.
- Runge-Kutta methods impose the condition that the Taylor series of $\mathbf{x}(t+h)$ in powers of $h = \Delta t$ should match its approximation by the numerical method.
- Runge-Kutta methods involve multiple stages of computation in which we use rates computed at previous points to estimate the position of intermediate points.

- ► For simplicity, consider a scalar differential equation.
- Take one step of size $h = \Delta t$.
- Use one intermediate point:
 - $t_{intermed} = t_i + ch$ where c is a coefficient between 0 and 1
 - Use Euler's method to estimate

$$x_{ ext{intermed}} pprox x_i + chf(x_i, t_i)$$

Blend the two derivatives at (t_i, x_i) and (t_{intermed}, x_{intermed}) to obtain the estimate of x_{i+1}:

$$x_{i+1} = x_i + h [a_1 f(x_i, t_i) + a_2 f(x_i + chf(x_i, t_i), t_i + ch)]$$

• We need to choose values for the coefficients a_1 , a_2 and c.

• Taylor expansion in powers of h of $x_{i+1} = x(t_i + h)$:

$$\begin{aligned} x(t_{i} + h) &= x(t_{i}) + hx'(t_{i}) + \frac{h^{2}}{2}x''(t_{i}) + O(h^{3}) \\ &= x_{i} + hf(x_{i}, t_{i}) + \frac{h^{2}}{2}\frac{d}{dt}x'(t)\Big|_{(t_{i}, x_{i})} + O(h^{3}) \\ &= x_{i} + hf(x_{i}, t_{i}) + \frac{h^{2}}{2}\frac{d}{dt}f(x, t)\Big|_{(t_{i}, x_{i})} + O(h^{3}) \\ &= x_{i} + hf(x_{i}, t_{i}) + \frac{h^{2}}{2}\left[\frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial t}\right]_{(t_{i}, x_{i})} + O(h^{3}) \\ &= x_{i} + hf(x_{i}, t_{i}) + \frac{h^{2}}{2}\left[f(x_{i}, t_{i})\frac{\partial f}{\partial x}\Big|_{(t_{i}, x_{i})} + \frac{\partial f}{\partial t}\Big|_{(t_{i}, x_{i})}\right] \\ &+ O(h^{3}) \end{aligned}$$

Taylor expansion in powers of h of the right-hand side (rhs) $x_i + h [a_1 f(x_i, t_i) + a_2 f(x_i + chf(x_i, t_i), t_i + ch)]$: $\mathsf{rhs} = x_i + h \left\{ a_1 f(x_i, t_i) \right\}$ $+ a_2 \left| f(x_i, t_i) + chf(x_i, t_i) \frac{\partial f}{\partial x} \right|_{(t_i, x_i)} + ch \frac{\partial f}{\partial t} \Big|_{(t_i, x_i)} \right|$ $+ O(h^3)$ $= x_i + h(a_1 + a_2)f(x_i, t_i) + a_2ch^2 \left| f(x_i, t_i) \frac{\partial f}{\partial x} \right|_{(t_i, t_i)} + \frac{\partial f}{\partial t} \right|_{(t_i, t_i)}$ $+ O(h^3)$

Now compare the two Taylor expansions:

$$\begin{aligned} x_i + hf(x_i, t_i) + \frac{h^2}{2} \left[f(x_i, t_i) \left. \frac{\partial f}{\partial x} \right|_{(t_i, x_i)} + \left. \frac{\partial f}{\partial t} \right|_{(t_i, x_i)} \right] \\ = x_i + h(a_1 + a_2) f(x_i, t_i) + a_2 ch^2 \left[f(x_i, t_i) \left. \frac{\partial f}{\partial x} \right|_{(t_i, x_i)} + \left. \frac{\partial f}{\partial t} \right|_{(t_i, x_i)} \right] \end{aligned}$$

- They are the same if $a_1 + a_2 = 1$ and $a_2c = \frac{1}{2}$.
- Can write everything in terms of one parameter, say a_2 : $a_1 = 1 - a_2$ and $c = \frac{1}{2a_2}$ $(a_2 \neq 0)$.

We get a family of two-stage (and second-order, i.e. with an error O(h³)) Runge-Kutta methods parameterized by a₂:

$$\begin{aligned} x_{i+1} &= x_i + h\left[(1 - a_2)f(x_i, t_i) \right. \\ &+ a_2 f\left(x_i + \frac{1}{2a_2} hf(x_i, t_i), t_i + \frac{1}{2a_2} h \right) \right] \end{aligned}$$

Examples:

$$a_{2} = 1: x_{i+1} = x_{i} + hf(x_{i} + \frac{h}{2}f(x_{i}, t_{i}), t_{i} + \frac{h}{2})$$
(Midpoint rule)

$$a_{2} = \frac{1}{2}: x_{i+1} = x_{i} + h\left[\frac{1}{2}f(x_{i}, t_{i}) + \frac{1}{2}f(x_{i} + hf(x_{i}, t_{i}), t_{i} + h)\right]$$
(Improved Euler)

Two-stage Runge-Kutta method Example: $\frac{dx}{dt} = x(1-x), x(0) = 0.1$ (a version of the logistic equation)

- For this ODE, f(x, t) = x(1 x).
- The general two-stage Runge-Kutta method is

$$\begin{aligned} x_{i+1} &= x_i + h \left[(1 - a_2) f(x_i, t_i) \right. \\ &+ a_2 f \left(x_i + \frac{1}{2a_2} h f(x_i, t_i), t_i + \frac{1}{2a_2} h \right) \right] \end{aligned}$$

- This is a map, a rule for calculating x_{i+1} from x_i .
- Maps can be implemented in xppaut.