Modelling Biochemical Reaction Networks

Lecture 6: Coupling uptake and growth

Marc R. Roussel

Department of Chemistry and Biochemistry

University of Lethbridge

Uptake model

 Recall: Last lecture, we derived equations for the rate of passive transport of glucose into yeast cells (v_t).
 We add a glucose utilization term (v_u) to the equation for the internal glucose:

$$\begin{aligned} \frac{d[\mathsf{G}_{(\mathrm{in})}]}{dt} &= v_t / V_{\mathsf{cells}} - v_u \\ \text{and} \quad \frac{d[\mathsf{G}_{(\mathrm{out})}]}{dt} &= -v_t / V_{\mathsf{medium}} \\ \text{with} \quad v_t &= \frac{v_{t,\max}[\mathsf{G}_{(\mathrm{out})}]}{[\mathsf{G}_{(\mathrm{out})}] + K_t} \end{aligned}$$

Growth modeling

- In cell cultures, we typically measure biomass or dry mass rather than the number of cells.
- The simplest way to model growth is to add a pseudo-reaction for the conversion of glucose to biomass (B):

$$G_{(in)} \xrightarrow{v_u} Y_g B$$

- Y_g is the biomass yield, the amount of biomass obtained per unit glucose metabolized.
- v_u is often of the Michaelis-Menten form to recognize the fact that there is a maximal rate of growth:

$$v_u = rac{v_{u,\max}[\mathsf{G}_{(\mathrm{in})}]}{[\mathsf{G}_{(\mathrm{in})}] + \mathcal{K}_u}$$

Growth modeling

The rate equation for biomass growth is then

$$\frac{dB}{dt} = Y_g v_u$$

• Note: B is normally measured in g/L.

Connections between growth and uptake

- Several quantities that appear as parameters in fact depend on some of the variables:
 - $V_{\rm cells} \propto B$

•
$$v_{t,\max} = k_{cat} T_0$$
 and $T_0 \propto B$
 $[k_{cat} = k_3/(1+K_2)]$

• $v_{u,\max} \propto B$

Parameter estimates Glucose transport by Hxt7

- k_{cat} ≈ 200 s⁻¹ Source: Ye et al., Yeast 18, 1257 (2001).
- $K_t \approx 2 \,\mathrm{mM}$

Source: Ye et al., Yeast 18, 1257 (2001).

• $T_0 \approx \frac{(2 \times 10^4 \text{ molecules/cell}) V_{\text{medium}}}{N_A (\text{biomass/cell})} B$

Source for density of transporters: Ye et al., Yeast **18**, 1257 (2001).

A typical yeast cell weighs about 60 pg (an oft repeated estimate, e.g. http://www.weizmann.ac.il/plants/Milo/ images/YeastSize-Feb2010.pdf) of which 60% is water (Illmer et al., FEMS Microbiol. Lett. **178**, 135, 1999). The biomass per cell is therefore about 24 pg/cell. Parameter estimates Glucose transport by Hxt7

• Because the cells occupy only a small fraction of the total volume, $V_{\text{medium}} \approx V_{\text{culture}}$. This varies from experiment to experiment, but might typically be 200 mL for an experiment in a shaker flask.

This gives $T_0 \approx (3 \times 10^{-10} \text{mol L g}^{-1})B$.

- Therefore $v_{t,\max} \approx (6 imes 10^{-8} \, {
 m mol} \, {
 m L} \, {
 m g}^{-1} {
 m s}^{-1}) B$
- ► The volume of cells in the solution can similarly be related to B assuming that yeast cells have a density (p_{cells}) similar to that of water (about 1000 g/L):

$$egin{aligned} &\mathcal{V}_{\mathsf{cells}} = B\mathcal{V}_{\mathsf{culture}}/
ho_{\mathsf{cells}} \ &= rac{0.2\,\mathsf{L}}{1000\,\mathsf{g}/\mathsf{L}}B = (2 imes10^{-4}\,\mathsf{L}^2/\mathsf{g})B \end{aligned}$$

Parameter estimates Growth parameters

- Y_g = 0.45 g biomass/g glucose Source: Ertugay and Hamamci, Folia Microbiol. 42, 463 (1997).
- Write $v_{u,\max} = \mu_{\max}B$.
- μ is a first-order rate constant for glucose utilization, which is proportional to biomass production.
- µ_{max} = 0.38 h⁻¹
 Source: Ye et al., Yeast 18, 1257 (2001).
- Another estimate: μ is related to the doubling time t_2 by $\mu = \ln 2/t_2$.
- Minimum doubling time for yeast grown on glucose: 75 min Source: Tyson et al., J. Bacteriol. 138, 92 (1979).

▶
$$\mu = 0.55 \, \mathrm{h^{-1}}$$

Parameter estimates Growth parameters

- I have had no luck tracking down data that would allow me to calculate K_u .
- Leave it as a disposable parameter
- Investigate its effect
- Fit to data?

Initial conditions

- Starved cells: $[G_{(in)}](0) = 0$.
- Ye and coworkers studied Hxt7 in 1% glucose solution, corresponding to about [G_(out)](0) = 55 mM.
- They started their experiments with a culture diluted to an optical density (OD) of 0.2 at 600 nm.
- An OD of 1 corresponds to 3 × 10⁷ cells/mL so we're starting with about 6 × 10⁶ cells/mL.
 Source: Ausubel et al., Short protocols in molecular biology, 5th ed., Vol. 2.
- ► Using the typical cell mass of 60 pg and 60% water content, this gives $B(0) \approx 0.1 \text{ g/L}$.