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Recommended reading

I Fall, Marland, Wagner and Tyson, sections 4.1, 4.2 and 4.7



Enzyme kinetics

I Almost all enzymes catalyze reactions in a variation on the
Michaelis-Menten mechanism.
For the conversion of a substrate S to a product P by an
enzyme E, the mechanism is

E + S
k1−−⇀↽−−
k−1

C
k−2−−→ E + P

where C is an enzyme-substrate complex.

Notation: Use E = [E], etc.
Observation: E + C = E0 is a constant.
Rate equations from mass action + enzyme conservation:

dS

dt
= −k1S(E0 − C ) + k−1C

dC

dt
= k1S(E0 − C )− (k−1 + k−2)C



Modeling enzyme kinetics

I If we want to model an enzyme-catalyzed reaction using the
law of mass action, we need at least three rate constants and
the enzyme concentration.

I Need special experiments to get full set of rate constants

I Would give us concentration of C for which data is not often
collected in experiments

I Can we simplify the rate equations?



The steady-state approximation

Observation: Most enzymes are very efficient catalysts present in
low concentrations in cells.

Consequence 1: Concentration of C will remain low

Consequence 2: After an initial rise, we would expect C to change
only slowly with time since it will be used up as fast
as it is made.

Mathematically, this implies dC/dt ≈ 0.
This is known as the steady-state approximation.

As a general rule, the SSA is applied to species that
react quickly once formed, e.g. low-abundance
intermediates.



The steady-state approximation

dC

dt
= k1S(E0 − C )− (k−1 + k−2)C ≈ 0

∴ C ≈ k1E0S

k1S + k−1 + k−2

∴ v =
dP

dt
= k−2C =

k1k−2E0S

k1S + k−1 + k−2

or

v =
vmaxS

S + KS
(Michaelis-Menten equation)

where

vmax = k−2E0 (maximal velocity)

KS = (k−1 + k−2)/k1(Michaelis constant)



Michaelis-Menten rate law

v =
vmaxS

S + KS

I Depends on just two parameters, vmax and KS

I Easily measurable

I Reduces the description in terms of elementary reactions to

the single reaction S
E−→ P



But is it OK to assume dC
dt ≈ 0?

I Steady-state approximation based on smallness of dC
dt , in turn

due to rapid degradation of C

I How do we know if C is degraded quickly?
What numbers should we be comparing?
Note: k1 has different units than k−1 and k−2.

Idea: Get rid of the units in all quantities in our equations.

Objective: Try to balance the terms so that the variables (S , C
and t) are all of unit magnitude.
Then, small quantities will become apparent.



Scaling analysis

I Define s = S/S̃ , c = C/C̃ , and τ = t/t̃, then try to pick S̃ ,
C̃ and t̃ such that s, c and τ are all O(1).

I Pick S̃ = S0.
I C rises from zero, hits a maximum, then starts to fall.
C̃ = Cmax (or some estimate thereof) would be a good scaling
factor.
C (t) reaches a maximum when dC/dt = 0, i.e. when

C (tmax) =
k1E0S(tmax)

k1S(tmax) + k−1 + k−2

I S ≤ S0 and C (tmax) is a strictly increasing function of
S(tmax), so pick

C̃ =
k1E0S0

k1S0 + k−1 + k−2
=

E0S0
S0 + KS

≥ C (tmax).



Scaling analysis

I Still need to find t̃
I Substitute S = sS̃ , C = cC̃ and t = τ t̃ into the rate

equations:

dS

dt
=

d(sS0)

d(τ t̃)
=

S0
t̃

ds

dτ

= −k1sS0
(
E0 − c

E0S0
S0 + KS

)
+ k−1c

E0S0
S0 + KS

∴
ds

dτ
= t̃

{
−k1E0s

(
1− c

S0
S0 + KS

)
+ k−1c

E0

S0 + KS

}
Similarly,

dc

dτ
= t̃k1 (S0 + KS)

{
s

(
1− c

S0
S0 + KS

)
− c

KS

S0 + KS

}



Scaling analysis

I Need to pick t̃ such that τ = O(1)

Principle: We are viewing C as a variable that changes slowly
after the initial transient.
Therefore, the evolution of the reaction towards
equilibrium is controlled by the rate of change of S ,
so look for the appropriate time scale in that
equation.

ds

dτ
= t̃

{
−k1E0s

(
1− c

S0
S0 + KS

)
+ k−1c

E0

S0 + KS

}
Note: The second term in ds

dτ is associated with C→ E + S,
not typically a dominant process in enzyme kinetics.

Pick t̃ = (k1E0)−1.



Scaling analysis

I Substitute t̃ into the rate equations:

ds

dτ
= −s

(
1− c

S0
S0 + KS

)
+ c

k−1

k1(S0 + KS)

= −s
(

1− c
S0

S0 + KS

)
+ c

k−1

k−1 + k−2

k−1 + k−2

k1(S0 + KS)

dc

dτ
=

S0 + KS

E0

[
s

(
1− c

S0
S0 + KS

)
− c

KS

S0 + KS

]
I Define

µ =
E0

S0 + KS
, α =

S0
S0 + KS

, β =
k−1

k−1 + k−2

noting that

1− α =
KS

S0 + KS



Scaling analysis

I Final equations:

ds

dτ
= −s(1− αc) + βc(1− α) (1)

and µ
dc

dτ
= s (1− αc)− c(1− α) (2)

I If µ is small (approaching zero), then the right-hand side of
equation 2 must also be small.
This is the formal justification for the steady-state
approximation.

I The steady-state approximation for the Michaelis-Menten
mechanism will be valid if E0 � S0 + KS .



The equilibrium approximation

E + S
k1−−⇀↽−−
k−1

C
k−2−−→ E + P

I If k−2 is small, then we might expect the reversible step to
approach equilibrium, with the formation of product being
only a minor perturbation on this equilibrium.

Equilibrium approximation: k1ES = k1S(E0 − C ) ≈ k−1C

I Solving this equation for C and then calculating v , we get

v ≈ vmaxS

S + KE

with KE = k−1/k1.
I This is of exactly the same form as the steady-state

approximation.



Cooperative binding

P + L
k1−−⇀↽−−
k−1

PL

PL + L
k2−−⇀↽−−
k−2

PL2

...

PLn−1 + L
kn−−⇀↽−−
k−n

PLn

P: Protein
L: Ligand

I Equilibrium constants for the individual steps: Ki = ki/k−i

I We say that binding is positively cooperative if
Kn > Kn−1 > · · · > K1 (often �).

I This implies kn > kn−1 > · · · > k1 or
k−n < k−(n−1) < · · · < k−1.



Cooperative binding

I Can often treat cooperative systems as if they are in
quasi-equilibrium, even if (e.g.) PLn goes on to other
reactions:

ki [PLi−1][L] ≈ k−i [PLi ] i = 1, 2 . . . , n

or
[PLi ] ≈ Ki [PLi−1][L]

I Start with i = 1:

[PL] ≈ K1[P][L] = Q1[P][L]

[PL2] ≈ K2[PL][L] = K1K2[P][L]2 = Q2[P][L]2

...
...

...

[PLn] ≈ Kn[PLn−1][L] =

(
n∏

i=1

Ki

)
[P][L]n = Qn[P][L]n



Cooperative binding

I Assume strong cooperativity: Ki � Ki−1∀i
I Then intermediate complexes are negligible.

I The total amount of protein (P0) is conserved so, assuming
an excess of ligand L,

P0 =
n∑

i=0

[PLi ] ≈ [P] + [PLn] = [P] (1 + Qn[L]n)

∴ [P] ≈ P0

1 + Qn[L]n

and [PLn] ≈ P0[L]n

Q−1
n + [L]n



Cooperative binding

I The expression

[PLn] ≈ P0[L]n

Q−1
n + [L]n

is what we would get for a single reaction

P + nL
 PLn

with equilibrium constant Qn (or dissociation/Michaelis
constant Q−1

n ).

I Usually model cooperative interactions as a single step, even
though these reactions are never elementary


