Modelling Biochemical Reaction Networks

Lecture 3: Overview of chemical kinetics

Marc R. Roussel

Department of Chemistry and Biochemistry

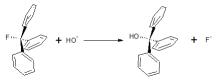
University of Lethbridge

Elementary reactions

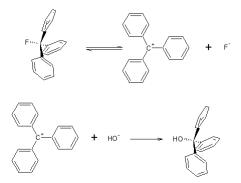
- Occurs as written, without any intervening steps
- Examples:
 - Binding of two molecules to form a complex:

 $A+B \to AB$

Dissociation of a complex:


$$AB \rightarrow A + B$$

 A chemical transformation that occurs in a single step, such as an S_N2 nucleophilic substitution:


$$HO^{-} + H_{H}C^{-} \to H \xrightarrow{CH_{3}} \left[HO \xrightarrow{CH_{3}} HO \xrightarrow{$$

Complex reactions

- Composed of several elementary reactions
- The list of elementary reactions making up a complex reaction is a mechanism.
- Example: S_N1 nucleophilic substitution Overall reaction:

S_N1 mechanism:

Rate of reaction

Convention: The rate of reaction is the rate of change of the concentration of a product with a stoichiometric coefficient of 1.

Convention: The rate of reaction is usually denoted v.

Example: For the reaction $A + 2B \rightarrow P + 2Q$, v = d[P]/dt.

▶ Other rates are related by stoichiometry, so in this example, d[A]/dt = −v, d[B]/dt = −2v and d[Q]/dt = 2v.

The rate law tells us how v for a reaction depends on the concentrations of species in the system.

Law of mass action

- The rate of an elementary reaction is proportional to the product of the concentrations of its reactants.
- The proportionality constant is called a rate constant, and usually denoted k.
- ► Example: For the elementary S_N^2 reaction $C_2H_5Br + OH^- \rightarrow C_2H_5OH + Br^-$,

 $v = k[C_2H_5Br][OH^-].$

Order of reaction

Partial order is the exponent of a particular concentration in a rate law.

If $v = k[A]^n[B]^m$, we say that the reaction is of the *n*'th order with respect to [A], and of the *m*'th order with respect to [B].

 Due to the law of mass action, for elementary reactions, the partial order coincides with the stoichiometric coefficient of a substance.

The order of a reaction is the sum of the partial orders, so the reaction in the above example is an (n + m)'th order reaction.

Additivity of rates

- In complex reactions, some substances will appear in more than one elementary reaction.
- The rate of change of the concentration of a substance is the sum of the rates of change due to each reaction in which that substance appears.
- The reverse of an elementary reaction is a separate elementary reaction.
- Example: In the S_N1 mechanism

$$C(C_6H_5)_3F \xrightarrow[k_{-1}]{k_1} C^+(C_6H_5)_3 + F^-$$
$$C^+(C_6H_5)_3 + OH^- \xrightarrow{k_2} C(C_6H_5)_3OH^-$$

$$\frac{d[C^{+}(C_{6}H_{5})_{3}]}{dt} = k_{1}[C(C_{6}H_{5})_{3}F] - k_{-1}[C^{+}(C_{6}H_{5})_{3}][F^{-}] - k_{2}[C^{+}(C_{6}H_{5})_{3}][OH^{-}]$$

Additivity of rates

Example: reversible dimerization

$$2A \stackrel{k_a}{\underset{k_d}{\longrightarrow}} B$$

Equivalent to

$$2A \xrightarrow{k_a} B \quad v_a = k_a[A]^2$$
$$B \xrightarrow{k_d} 2A \quad v_d = k_d[B]$$

Rate equations:

$$\frac{d[A]}{dt} = -2v_a + 2v_b = -2k_a[A]^2 + 2k_d[B]$$
$$\frac{d[B]}{dt} = v_a - v_b \qquad = k_a[A]^2 - k_d[B]$$

Law of microscopic reversibility

- Every elementary reaction is reversible.
- Required for consistency with equilibrium thermodynamics.
- Living organisms live far from equilibrium.
 - \implies Some reverse reactions are negligibly slow under physiological conditions.

Implications for modeling

- In a model, we would only include reactions that are significant under physiological conditions (e.g. ignore some reverse reactions).
- The full mechanism of a biochemical network can include many dozens of reactions.
- We don't usually need a fully detailed model in the sense that it lists every elementary reaction.
- Next lecture: some standard simplification methods