Modelling Biochemical Reaction Networks

Introductory lecture: What to model? Why?

Marc R. Roussel

Department of Chemistry and Biochemistry



#### Recommended reading

▶ Fall, Marland, Wagner and Tyson, chapter 1

### A bit of philosophical background

Popper: Falsification of hypotheses drives science forward.

Modelling as machinery for the falsification of mechanistic hypotheses

- We start with some observations we are trying to explain.
- Someone generates a hypothesis for a mechanism for the phenomenon.
- Mechanistic hypotheses can be converted to mathematical models.
- Does the model replicate the observations that the hypothesis was meant to explain?
- Does the model make any new predictions that could be tested experimentally?

#### Other reasons to make mathematical models

Discrimination between rival models

Exploration of phenomena not readily studied experimentally

Exploration of parameter space

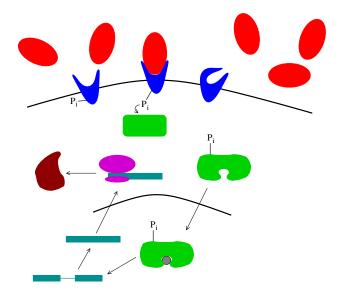
Reduction of a phenomenon to its essentials for further study (Re)engineering of a process Exploration of possible interventions

#### Biochemistry as a multiscale discipline

- Biochemical processes depend on and affect phenomena over a wide range of spatial and temporal scales
- Some relevant length scales: Chemical bonds: 10<sup>-10</sup> m Macromolecular dimensions: 10<sup>-9</sup>-10<sup>-8</sup> m Length of a bacterium or of a mitochondrion: 10<sup>-6</sup> m Red blood cell diameter: 10<sup>-5</sup> m Neuron length: 10<sup>-3</sup>-1 m
- Some relevant time scales:

Time for Na<sup>+</sup> to transit through a channel:  $10^{-8}$  s Macromolecular conformational changes:  $10^{-7}$ - $10^{-3}$  s Transcription, translation:  $10^{1}$ - $10^{4}$  s Circadian rhythm:  $10^{5}$  s

#### Number of molecules


- Suppose that  $[X] = 10 \,\mu \mathrm{mol/L}$ .
- How many molecules of X do we have?

| V/L        | Example        | $N_X$         |
|------------|----------------|---------------|
| $10^{-16}$ | Axon terminal  | 600           |
| $10^{-15}$ | Bacterium      | 6000          |
| $10^{-14}$ | Yeast cell     | 60 000        |
| $10^{-12}$ | Mammalian cell | $6	imes 10^6$ |

# Modelling biochemical systems

- You can't model everything completely.
- Many choices to make:
  - Is a qualitative model OK or do you want quantitative agreement?
  - Which physical part of the system (subcellular compartment, cell, group of cells, etc.) do you want to model?
  - Do you need to take the spatial dimension into account explicitly?
    - Do you need to explicitly model diffusive transport?
    - Is it OK to just treat the system as a set of coupled compartments?
  - What range of time scales do you need to cover?
  - What biochemical processes do you need to include? At what level of detail?
  - Number of molecules: continuous description (many molecules) or stochastic (statistical; few molecules)?

## Level of biochemical detail



### This course

- Focus on kinetics
- Both differential equation (continuous) and stochastic models covered
- Compartmental descriptions of spatial effects only
- Emphasis on selecting the particular interactions to model, and the level of description required

Some central questions (some of which may not be resolved in this course)

- How do you decide if you have a "good" model?
- Past a certain level of complexity, we tend to rely heavily on computation.

How do we know if the results of a computation are correct?

Since kinetic parameters are often difficult to get, is it OK just to get the right structure for a model?