next up previous
Up: Back to the Chemistry 3730 assignment index

Assignment 8 solutions

    1. The wavefunction is
      > psi2px := (r,theta,phi) ->
      > N*r*exp(-r/(2*a0))*sin(theta)*cos(phi);

      displaymath314

      where N is a normalization constant. We wish to find a value of N such that tex2html_wrap_inline358 .

      > assume(a0>0);
      > solve(int(int(int(psi2px(r,theta,phi)^2*r^2*sin(theta),
      > phi=0..2*Pi),theta=0..Pi),r=0..infinity)=1,N);

      displaymath315

      > N:=1/8*sqrt(2)*sqrt(Pi*a0)/(Pi*a0^3);

      displaymath316

      Verification:

      > int(int(int(psi2px(r,theta,phi)^2*r^2*sin(theta),phi=0..2*Pi),
      > theta=0..Pi),r=0..infinity);

      displaymath317

    2. The average kinetic energy is tex2html_wrap_inline360 . Because K involves the Laplacian and the Laplacian is complicated, it's easiest to do this in pieces:

      eqnarray41

      > Lrip := int(int(int(psi2px(r,theta,phi)*1/r^2
      > *diff(r^2*diff(psi2px(r,theta,phi),r),r)*r^2*sin(theta),
      > phi=0..2*Pi),theta=0..Pi),r=0..infinity);

      displaymath318

      > Ltip := int(int(int(psi2px(r,theta,phi)*1/(r^2*sin(theta))
      > *diff(sin(theta)*diff(psi2px(r,theta,phi),theta),theta)
      > *r^2*sin(theta),phi=0..2*Pi),theta=0..Pi),r=0..infinity);

      displaymath319

      > Lpip := int(int(int(psi2px(r,theta,phi)*1/(r^2*sin(theta)^2)
      > *diff(psi2px(r,theta,phi),phi$2)*r^2*sin(theta),phi=0..2*Pi),
      > theta=0..Pi),r=0..infinity);

      displaymath320

      > K_avg := -hbar^2/(2*mu)*(Lrip+Ltip+Lpip);

      displaymath321

    3. We first need to calculate the radial probability density.
      > rpd2p := int(int(psi2px(r,theta,phi)^2*r^2*sin(theta),
      > phi=0..2*Pi),theta=0..Pi);

      displaymath322

      > plot(subs(a0=1,rpd2p),r=0..15);
      tex2html_wrap364
    4. We could do a triple integral of the square of the wavefunction, but we have already done two of the required integrals when we calculated the radial probability density so we can just use that to simplify the calculation:
      > evalf(int(rpd2p,r=2*a0..infinity));

      displaymath323

    1. > V := x -> Ea*((x/xe)^2-1)^2;

      displaymath324

      > plot(subs(xe=1,Ea=1,V(x)),x=-2..2);
      tex2html_wrap366
    2. displaymath362

    3. phi := x -> exp(-b*(x-xe)^2)+exp(-b*(x+xe)^2);

      displaymath325

      As usual, we compute the variational energy in pieces. Note the use of colons instead of semi-colons to suppress unwanted screen output.

      > assume(b>0);
      > Kip := -hbar^2/(2*m)*int(phi(x)*diff(phi(x),x$2),
      > x=-infinity..infinity):
      > Vip := int(phi(x)^2*V(x),x=-infinity..infinity):
      > ip := int(phi(x)^2,x=-infinity..infinity):
      > Evar := (Kip+Vip)/ip:
      > best_b:=solve(diff(Evar,b)=0,b);

      eqnarray134

    4. > Ea := 50e3/6.0221e23;

      displaymath326

      > xe := 2e-10;

      displaymath327

      > m := 1.6726486e-27;

      displaymath328

      > hbar := 6.6261e-34/(2*Pi);

      displaymath329

      > evalf(best_b);

      displaymath330

      > E0:=evalf(subs(b=%,Evar));

      displaymath331

    5. > xl := solve(V(x)=E0,x);

      displaymath332

      The first two solutions are the left and right extremes of the barrier while the other two are the left and right outer classical turning points.

      We need a normalized wavefunction to evaluate probabilities:

      > nf := 1/sqrt(int(subs(b=bb,phi(x)^2),x=-infinity..infinity));

      displaymath335

      > phin:=x->phi(x)*nf;

      displaymath336

      Verification:

      > evalf(int(subs(b=bb,phin(x)^2),x=-infinity..infinity));

      displaymath337

      > evalf(int(subs(b=bb,phin(x)^2),x=xl[1]..xl[2]));

      displaymath338

      This probability is actually quite large so tunneling through the barrier must be a significant event.



Marc Roussel
Sat Nov 14 18:08:31 MST 1998