next up previous
Up: Back to the Chemistry 3730 assignment index

Assignment 10 solutions

  1. Define the integrals:
    > HAA := R ->
    > e^2/(4*Pi*epsilon0*a0)*(exp(-2*R/a0)*(1+a0/R)-a0/R-1/2);

    displaymath157

    > HAB := R ->
    > -e^2/(4*Pi*epsilon0*a0)*(SAB(R)/2+exp(-R/a0)*(1+R/a0));

    displaymath158

    > SAB := R -> exp(-R/a0)*(1+R/a0+(R/a0)^2/3);

    displaymath159

    > Ep := R -> (HAA(R)+HAB(R))/(1+SAB(R));

    displaymath160

    > Em := R -> (HAA(R)-HAB(R))/(1-SAB(R));

    displaymath161

    > assume(a0>0);
    > limit(Ep(R),R=infinity);

    displaymath162

    > limit(Em(R),R=infinity);

    displaymath162

    This is exactly the ground-state energy of a hydrogen atom. This makes sense because as tex2html_wrap_inline201 , a hydrogen molecular ion should separate into a hydrogen atom and a proton.

  2. > Veffp := R -> Ep(R) + e^2/(4*Pi*epsilon0*R);

    displaymath164

    > Veffm := R -> Em(R) + e^2/(4*Pi*epsilon0*R);

    displaymath165

    > e := 1.6022e-19;

    displaymath166

    > epsilon0 := 8.8542e-12;

    displaymath167

    > a0 := 5.292e-11;

    displaymath168

    > plot({Veffp,Veffm},0..7*a0,-3e-18..1e-18);
    tex2html_wrap209

    To figure out which curve is which:

    > evalf(Veffp(1e-10));

    displaymath169

    > evalf(Veffm(1e-10));

    displaymath170

    The bonding state is represented by the + effective potential energy curve (Veffp).

  3. To find a minimum in tex2html_wrap_inline205 , set the derivative with respect to R equal to zero and solve:
    > Req:=fsolve(diff(Veffp(R),R)=0,R,5e-11..1.5e-10);

    displaymath171

  4. > k := evalf(subs(R=Req,1/2*diff(Veffp(R),R$2)));

    displaymath172

    > mH := 1.0078e-3/6.0221e23;

    displaymath173

    > mu := mH/2;

    displaymath174

    > omega0 := sqrt(k/mu);

    displaymath175

    > hbar := 6.6261e-34/(2*Pi);

    displaymath176

    > E0 := evalf(1/2*hbar*omega0);

    displaymath177

  5. > evalf(limit(Veffp(R),R=infinity)-Veffp(Req)+E0);

    displaymath178



Marc Roussel
Wed Dec 2 21:34:31 MST 1998