next up previous
Up: Back to the Chemistry 3730 test index

Chemistry 3730 Fall 2000 Quiz 3 Solutions

1.
> phi := x -> exp(-beta*x^2);

\begin{displaymath}\phi := x\rightarrow e^{( - \beta \,x^{2})}
\end{displaymath}

> assume(beta>0);
> V := x -> Vmax*(1-exp(-alpha*x^2));

\begin{displaymath}V := x\rightarrow \mathit{Vmax}\,(1 - e^{( - \alpha \,x^{2})})
\end{displaymath}

> Vmax := 1e-20;

\begin{displaymath}\mathit{Vmax} := .1\,10^{-19}
\end{displaymath}

> alpha := 1e22;

\begin{displaymath}\alpha := .1\,10^{23}
\end{displaymath}

> m := 1e-26;

\begin{displaymath}m := .1\,10^{-25}
\end{displaymath}

> hbar := (6.626e-34)/(2*Pi);

\begin{displaymath}\mathit{hbar} := .3313000000\,10^{-33}\,{\displaystyle \frac {1}{
\pi }}
\end{displaymath}

As usual, we break up the variational energy into pieces:
> Kip := -hbar^2/(2*m)*int(phi(x)*diff(phi(x),x$2),
                           x=-infinity..infinity);

\begin{displaymath}\mathit{Kip} := .2743992250\,10^{-41}\,{\displaystyle \frac {
\sqrt{\beta \symbol{126}}\,\sqrt{2}}{\pi ^{(3/2)}}}
\end{displaymath}

> Vip := int(phi(x)^2*V(x),x=-infinity..infinity);

\begin{displaymath}\mathit{Vip} := .1253314137\,10^{-19}\,{\displaystyle \frac {...
...ol{126}}\,\sqrt{.5000000000
\,10^{22} + \beta \symbol{126}}}}
\end{displaymath}

> ip := int(phi(x)^2,x=-infinity..infinity);

\begin{displaymath}\mathit{ip} := {\displaystyle \frac {1}{2}} \,{\displaystyle
\frac {\sqrt{2}\,\sqrt{\pi }}{\sqrt{\beta \symbol{126}}}}
\end{displaymath}

> Evar := (Kip+Vip)/ip;

\begin{eqnarray*}\lefteqn{\mathit{Evar} := ((.2743992250\,10^{-41}\,
{\displayst...
...e height0.41em width0em depth0.41em} \right. \!
\! \sqrt{\pi }
\end{eqnarray*}


We now want to minimize this expression with respect to the variational parameter $\beta$:
> solve(diff(Evar,beta)=0,beta);

\begin{displaymath}-.1073220371\,10^{23}, \,.3404729218\,10^{22}
\end{displaymath}

The positive value is the only likely one. We can verify that it minimizes the variational energy by plotting this quantity for nearby values of $\beta$.
> plot(Evar,beta=1e21..5e21);
\scalebox{0.5}{\rotatebox{270}{\includegraphics{quiz3s01.eps}}}
> assign(beta=.3404729218e22);
> evalf(Evar);

\begin{displaymath}.5528474761\,10^{-20}
\end{displaymath}

Thus, the variational energy is $5.53\times 10^{-21}\,\mathrm{J}$.

2.
I performed UHF calculations for both Li and Li+ using the 6-31G basis set. For Li, the highest occupied orbital has an energy of $-5.327\,\mathrm{eV}$ so that the ionization energy computed by Koopmans's theorem is 5.327eV. The ground state energies of Li and of Li+ are, respectively, -4663.171 and $-4520.332\,\mathrm{kcal/mol}$. The difference between these values is 122.839kcal/mol or 5.327eV. The experimental value is 5.392eV. Thus, the Koopmans theorem and difference values agree while they differ from the experimental value by 0.065eV.

next up previous
Up: Back to the Chemistry 3730 test index
Marc Roussel
2000-10-30