next up previous
Up: Back to the Chemistry 3730 assignment index

Chemistry 3730 Fall 2000 Assignment 4 Solutions

1.
The variational wavefunction is
> phi := r -> exp(-alpha*r^2);

\begin{displaymath}\phi := r\rightarrow e^{( - \alpha \,r^{2})}
\end{displaymath}

> assume(alpha>0);
We break up the variational energy into three pieces, as usual:
> Kip := -hbar^2/(2*mu)*int(int(int(phi(r)*diff(r^2*diff(phi(r),r),r)
         *sin(theta),r=0..infinity),theta=0..Pi),phi=0..2*Pi);

\begin{displaymath}\mathit{Kip} := {\displaystyle \frac {3}{8}} \,{\displaystyle...
...\,\pi ^{(3/2)}\,\sqrt{2}}{\mu \,\sqrt{
\alpha \symbol{126}}}}
\end{displaymath}

> Vip := -Z*e^2/(4*Pi*epsilon0)*int(int(int(phi(r)^2*r*sin(theta),
         r=0..infinity),theta=0..Pi),phi=0..2*Pi);

\begin{displaymath}\mathit{Vip} := - {\displaystyle \frac {1}{4}} \,{\displaystyle
\frac {Z\,e^{2}}{\varepsilon 0\,\alpha \symbol{126}}}
\end{displaymath}

> ip := int(int(int(phi(r)^2*r^2*sin(theta),r=0..infinity),
        theta=0..Pi),phi=0..2*Pi);

\begin{displaymath}\mathit{ip} := {\displaystyle \frac {1}{4}} \,{\displaystyle
\frac {\pi ^{(3/2)}\,\sqrt{2}}{\alpha \symbol{126}^{(3/2)}}}
\end{displaymath}

> Evar := (Kip+Vip)/ip;

\begin{displaymath}\mathit{Evar} := 2\,{\displaystyle \frac {({\displaystyle \fr...
...}}} )\,\alpha \symbol{126}^{(3/2)}\,\sqrt{2}}{
\pi ^{(3/2)}}}
\end{displaymath}

We minimize the variational energy with respect to the variational parameter $\alpha$:
> solve(diff(Evar,alpha)=0,alpha);

\begin{displaymath}{\displaystyle \frac {1}{18}} \,{\displaystyle \frac {Z^{2}\,...
...}\,\mu ^{2}}{\pi ^{3}\,\mathit{hbar}^{4}\,\varepsilon 0^{2}}}
\end{displaymath}

> assign(alpha=1/18*Z^2*e^4*mu^2/(Pi^3*hbar^4*epsilon0^2));
We can now evaluate the variational energy:
> simplify(Evar);

\begin{displaymath}- {\displaystyle \frac {1}{12}} \,{\displaystyle \frac {( - Z...
...\,Z\,e^{2}}{\pi ^{3}\,\mathit{hbar}^{2}\,
\varepsilon 0^{2}}}
\end{displaymath}

> assume(Z>0);
> assume(e>0);
> assume(mu>0);
> assume(hbar>0);
> assume(epsilon0>0);
> simplify(%);

\begin{displaymath}- {\displaystyle \frac {1}{12}} \,{\displaystyle \frac {\math...
...athit{hbar\symbol{126}}^{2}\,\varepsilon 0
\symbol{126}^{2}}}
\end{displaymath}

Now to compute the percent error:
> Eexact := -Z^2*e^4*mu/(32*Pi^2*epsilon0^2*hbar^2);

\begin{displaymath}\mathit{Eexact} := - {\displaystyle \frac {1}{32}} \,
{\displ...
...arepsilon 0
\symbol{126}^{2}\,\mathit{hbar\symbol{126}}^{2}}}
\end{displaymath}

> simplify((Eexact-Evar)/Eexact);

\begin{displaymath}{\displaystyle \frac {1}{3}} \,{\displaystyle \frac { - 8 + 3\,
\pi }{\pi }}
\end{displaymath}

> evalf(%);

.1511736370

Thus, the error in the Gaussian approximation is about 15%.
2.
(a)
Very similar results are obtained with the 6-311G and D95* basis sets. However, the former basis set uses 13 basis functions while the latter uses 16. Accordingly, the 6-311G basis set is the better one to use. With this basis set we find a ground-state energy of $-9144.0\,\mathrm{kcal/mol}$.
(b)
Adding extra basis functions doesn't reduce the energy much in this case. This suggests that the 6-311G basis set is large enough to reach the Hartree-Fock limit for beryllium.
3.
(a)
I expect Fe3+ to have a half-filled 3d subshell so the spin multiplicity I used was 6. I performed an STO-6G* calculation, adding an spd shell with an orbital exponent of 21. The computed energy was $-789\,905.1\,\mathrm{kcal/mol}$.
(b)
The computed electronic configuration is
1s22s22p63s23p63d5.
This agrees with what we would have predicted based on the usual rules.

next up previous
Up: Back to the Chemistry 3730 assignment index
Marc Roussel
2000-10-30