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Mass-action models are not only used in the chemical sciences. They are
also used extensively in ecological and epidemiological modeling. One of the
most famous models in epidemiology is the SIR model, which describes a
disease in which the population can be divided into Susceptible, Infectious
and Recovered individuals. While this is a very simple model, it does cap-
ture the essential features of many diseases. And it goes without saying that
epidemiologists use a range of models as appropriate, some much more com-
plicated than a basic SIR model. But the SIR model remains a basic entry
point for a lot of modeling in epidemiology.

The SIR model consists of the following set of mass-action events:

1. If a susceptible individual comes in contact with an infected individ-
ual, there is a chance that the disease will be transmitted from one
individual to another. At the population level, this corresponds to a
transmission process

S + I
kt−−→ 2 I (1a)

with rate ktSI, using capital letters to represent either the number of
individuals in a given “compartment” (category) or their density (e.g.
in units of invididuals per unit area). The constant kt depends on how

∗These notes are enrichment. I don’t intend to examine this material although clearly
some parts of it (writing rate equations, etc.) fall squarely within the examinable material
of this course.
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transmissible the disease is, and on the average number of contacts per
unit time that could lead to transmission. In the case of a pandemic
such as the current Covid-19 pandemic, public health measures can
reduce the value of kt by reducing the number of potentially hazardous
contacts, so kt is not necessarily constant. In the basic SIR model
however, we treat it as such.

2. Infectious individuals recover (or die—the simple SIR model makes
no fundamental distinction between these cases, although clearly they
matter a lot to us).

I
kr−−→ R. (1b)

And that is the whole model. We can write the mass-action differential
equations for this model as follows:

dS

dt
= −ktSI, (2a)

dI

dt
= ktSI − krI = (ktS − kr)I, (2b)

dR

dt
= krI. (2c)

The SIR model assumes a constant population size. Note that

dS

dt
+
dI

dt
+
dR

dt
= 0,

and since, by the addition rule for derivatives,

dS

dt
+
dI

dt
+
dR

dt
=
d

dt
(S + I +R) ,

it follows that S+ I +R is a constant. This is not a bad approximation pro-
vided a disease doesn’t hang around for too long. Obviously, for an endemic
disease (such as, e.g., chicken pox), we might need a model that accounts for
changes in population size from various causes.

Let’s look a little harder at equation (2b). An outbreak will spread or die
out depending on the sign of the term in parentheses: if this sign is positive,
the number of infectious individuals grows, and this number decreases if the
quantity in parentheses is negative. Thus, the disease spreads if

ktS − kr > 0
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or
ktS

kr
> 1,

and dies out otherwise. This is exactly what we want for an R number. If we
take S = S0, the size of the susceptible population at time zero (essentially,
the entire population), then we get the basic reproduction number:

R0 =
ktS0

kr
.

On the other hand, if we take S at time t, we get the effective reproduction
number1

Re =
ktS

kr
. (3)

In our original treatment of reproduction numbers, we had τ , the aver-
age time that a person remains infectious. There is a connection between
population-level statistics and individual-level statistics that we won’t go into
here (but that you can learn about in my Foundations of Chemical Kinetics
course, which will be offered next Fall if all goes well). This allows us to make
an important connection between the rate constant kr, which gives the rate
at which infectious individuals recover, and τ , the average time of infection:2

kr =
1

τ
.

If we substitute this relationship into equation (3), we get

Re = ktSτ. (4)

Equation (4) has a simple interpretation: ktS is the rate at which the infec-
tion is transferred per infectious person, while τ is the average time a person
remains infectious. If I multiply the rate of transfer of infection by the in-
terval of time that a person is infectious, I get the approximate number of
individuals to which the disease is passed on.

1You can probably see now why I use Re for the effective reproduction number. If I
didn’t, we would have a problem distinguishing it from the number of recovered individuals
in an SIR model.

2Something to ponder for the mathematically inclined among you: the average time
isn’t the same as the half-life. If you have taken a statistics course, it may be obvious to
you why this is.
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Finally note that the two definitions of R0 and of Re we have seen, in this
and the previous notes, are slightly different and need not agree. However,
there is a relationship between them, provided kτ is not too large. Recall
that we had

Re = ekτ ,

where k is the slope of the tangent to the graph of ln I vs t. Now take a
Taylor series3 of this equation for Re at small values of x = kτ , stopping at
the first “interesting” term (the first one that depends on kτ):

Re ≈ 1 + kτ. (5)

If the two definitions of Re are to agree, we should have

ktSτ = 1 + kτ,

∴ k =
ktSτ − 1

τ
= ktS −

1

τ
= ktS − kr.

So the k determined from data on the time dependence of the infections is
exactly the pseudo-first-order rate constant that appears as the coefficient of
I in equation (2b)! This shows the two approaches to be consistent: k > 0
and thus Re obtained from data is greater than 1 exactly when Re obtained
from the SIR model [equation (3)] is also greater than 1.

So far, we have assumed that we would be given τ , and therefore focused
on calculating k. We can however estimate Re directly from an SIR-based
analysis. Since people recover after being infected, we would expect there
to be a simple relationship between R and I. In fact, we can solve the SIR
equations exactly and write down an explicit relationship between the two,
but it turns out to be more convenient to think about this relationship in a
more abstract way. If R = R(I), then differentiating this relationship with
respect to time and applying the chain rule gives

dR

dt
=
dR

dI

dI

dt

or
dR

dI
=
dR/dt

dI/dt
.

3Easily the most underappreciated and most useful bit of applied mathematics taught
in introductory calculus courses.
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Using equations 2b and 2c, we get

dR

dI
=

krI

(ktS − kr)I
=

kr
ktS − kr

=
1

ktS

kr
− 1

=
1

Re − 1
.

We decided that, logically, R should be a function of I. Looking at the
expression above though, it would be more convenient to express the rela-
tionship the other way: I = I(R). This is possible provided the relationship
between the two variables is locally invertible, which should be the case given
that R is a strictly increasing function of time. Thus,

dI

dR
= Re − 1.

The procedure for calculating Re is therefore as follows: First, get the slope
of a plot of I vs R. Then we can get Re simply by calculating

Re = 1 +
dI

dR
.

Note that the sign of dI/dR determines whether Re is larger than 1 or smaller
than 1.

If we also get k using the techniques of the previous set of notes, then
since kτ = Re − 1 from equation (5), we get

τ =
1

k
(Re − 1) =

1

k

dI

dR
.
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