
Chemistry 2740 Spring 2016 Test 3 solutions

1. (a) We are given ∆rH
◦ and ∆rS

◦, so we can directly calculate ∆rG
◦ at 37 ◦C:

∆rG
◦ = ∆rH

◦ − T∆rS
◦

= −138 kJ mol−1 − (310.15 K)(−0.305 kJ K−1mol−1)

= −43 kJ mol−1.

∴ K = exp

(
−∆rG

◦

RT

)
= exp

(
43× 103 J mol−1

(8.314 472 J K−1mol−1)(310.15 K)

)
= 2.0× 107.

(b) Because the standard state is 1 mol L−1, we have to be careful to convert from
µmol L−1: I’m going to use an initial/change/final table here:

Hp Hb Hp ·Hb
Initial: 2.5× 10−5 6× 10−6 0
Change: −x −x x
Final: 2.5× 10−5 − x 6× 10−6 − x x

K = 2.0× 107 =
aHp ·Hb

(aHp)(aHb)
=

x

(2.5× 10−5 − x)(6× 10−6 − x)
.

I solved this equation using the equation solver in my calculator and got

x = 5.985× 10−6.

The percentage of free hemoglobin is

6× 10−6 − x
6× 10−6

× 100% = 0.26%.

If you’re a bit more daring, you can short-cut this problem. The equilibrium
constant is very large. Therefore, almost all of the Hb will be bound up by
Hp. This implies that [Hp·Hb] ≈ 6µmol L−1 and [Hp] ≈ 25 − 6µmol L−1 =
19µmol L−1. Substituting these in the equilibrium relationship, we have

K = 2.0× 107 =
aHp ·Hb

(aHp)(aHb)
=

6× 10−6

19× 10−6aHb

.

We solve this equation for aHb:

aHb =
6× 10−6

(19× 10−6)(2.0× 107)
= 1.5× 10−8,

corresponding to 0.26% of the total hemoglobin.

Very little free hemoglobin remains in the bloodstream, so the danger posed by
free hemoglobin is greatly reduced by haptoglobin.
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2. (a)
Zn(s) + SO2−

4(aq) → ZnSO4(s) + 2e−

2×
(

2H+
(aq) + NO−

3(aq) + e− → NO2(g) + H2O(l)

)
Zn(s) + SO2−

4(aq) + 4H+
(aq) + 2NO−

3(aq) → ZnSO4(s) + 2NO2(g) + 2H2O(l)

(b) Electrons flow from the zinc to the platinum electrode.

(c)

∆rG
◦
m = ∆fG

◦(ZnSO4) + 2∆fG
◦(NO2) + 2∆fG

◦(H2O)−
[
∆fG

◦(SO2−
4 ) + 2∆fG

◦(NO−
3 )
]

= −874.4 + 2(51.32) + 2(−237.140)− [−744.00 + 2(−111.4)] kJ mol−1

= −279.2 kJ mol−1.

From the balancing, we have νe = 2.

E◦ = −∆rG
◦
m/(νeF )

=
279.2× 103 J mol−1

(2)(96 485.342 C mol−1)

= 1.447 V.

(d) We need the activity of H+ and NO−
3 in the right half-cell. (Look at where these

species appear in the half-reactions.)

Ic,right =
1

2

[
(+1)2(0.0078) + (−1)2(0.0078)

]
= 0.0078 mol L−1.

ln γH+ = −(1.107× 10−10)(+1)2
[
(6.939× 10−10)(298.15 K)

]−3/2√
0.0078 mol L−1

= −0.10.

∴ γH+ = e−0.10 = 0.90 = γNO−
3
.

The last equality holds because H+ and NO−
3 have the same charge and are in the

same solution (same ionic strength).

∴ aH+ = γH+ [H+]/c◦ = 0.90(0.0078) = 0.0070 = aNO−
3
.

aNO2 = p/p◦ =
0.38 bar

1 bar
= 0.38.

E = E◦ − RT

νeF
lnQ

= E◦ − RT

νeF
ln

(
(aNO2)

2

(aSO2−
4

)(aH+)4(aNO−
3

)2

)

= 1.447 V − (8.314 472 J K−1mol−1)(298.15 K)

(2)(96 485.342 C mol−1)
ln

(
(0.38)2

(0.0013)(0.0070)4(0.0070)2

)
= 1.004 V.
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Bonus: Note that I’m going to give a lot more detail than I would have needed in order
to award a bonus mark.

We need the activity of the sulfate ion. H2SO4 is a strong acid, but HSO−
4 is

not. However, the pKa of the second proton is very low (1.96). A quick, back-
of-the-envelope calculation should convince you that the pH will lie somewhere
between 2.6 (full dissociation of the first proton) and 2.3 (full dissociation of both
protons). This is close to the pKa so, in order to determine the concentration of
free sulfate, we have to consider the equilibrium

HSO−
4(aq) 
 H+

(aq) + SO2−
4(aq).

Let’s start with an initial/change/final table. The first proton of H2SO4 dissoci-
ates completely, leading to the first line of the table:

HSO−
4 H+ SO2−

4

Initial: 0.0025 0.0025 0
Change: −x +x +x
Final: 0.0025− x 0.0025 + x x

Now let’s develop the Ka expression for the second proton:

Ka,2 =
(aH+)(aSO2−

4
)

aHSO−
4

=
(γH+)(γSO2−

4
)

γHSO−
4

[H+][SO2−
4 ]

[HSO−
4 ]

, (1)

leaving out the usual factors of c◦. Using our table, we get

Ka,2 =
(γH+)(γSO2−

4
)

γHSO−
4

x(0.0025 + x)

0.0025− x
. (2)

We now need to deal with the ionic activity coefficients. The ionic strength is

Ic =
1

2

(
[H+] + [HSO−

4 ] + 4[SO2−
4 ]
)

=
1

2
(0.0025 + x+ 0.0025− x+ 4x) = 0.0025 + 2x.

We can then use the equation

ln γi = −Az2i (εT )−3/2
√
Ic

to obtain equations for the activities of each of the ions in terms of x. Note that we
will have γH+ = γHSO−

4
since their charges are equal in magnitude, so equation (2)

will simplify a little:

Ka,2 = γSO2−
4

x(0.0025 + x)

0.0025− x
. (3)

We therefore just need

γSO2−
4

= exp
(
−4A(εT )−3/2

√
0.0025 + 2x

)
.
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After substituting the activity coefficient into equation (3), we can solve for x.
Once we have x, we calculate γSO2−

4
, and finally the activity of the ion by

aSO2−
4

= γSO2−
4
x/c◦.
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