Chemistry 2740 Spring 2009 Test 3

Time: 50 minutes Questions: 3 Marks: 40

Aids allowed: calculator, 8.5×11 -inch formula sheet **Answer all questions** in the booklets provided.

Attempt the bonus question only if you have done all you can on the other questions!

1. Consider the following table, which gives the results of a set of initial rate experiments for a reaction with the stoichiometry $A + B \rightarrow P$.

Experiment	$a/\mathrm{mol}\mathrm{L}^{-1}$	$b/10^{-3} { m mol}{ m L}^{-1}$	$v/10^{-3} \mathrm{mol}\mathrm{L}^{-1}\mathrm{s}^{-1}$
1	0.10	1.4	0.31
2	0.20	1.4	1.24
3	0.10	2.1	

- (a) What is the order with respect to A? [2 marks]
- (b) In a separate set of experiments, it was determined that the order with respect to B is $\frac{1}{2}$. What reaction rate would you predict for experiment 3? [3 marks]
- (c) What is the value of the rate constant? [3 marks]
- (d) Could this reaction be elementary? Why or why not? [2 marks]

2. In strongly acidic solutions, HBrO₂ disproportionates according to the overall reaction¹

$$2 \mathrm{HBrO}_{2(\mathrm{aq})} \stackrel{k_4}{\rightleftharpoons} \mathrm{HOBr}_{(\mathrm{aq})} + \mathrm{BrO}_{3(\mathrm{aq})}^- + \mathrm{H}^+(\mathrm{aq}).$$

(a) The following data have been obtained by Försterling and Varga for this reaction in 1 M sulfuric acid at 20°C:²

$$t/s$$
 0 10 20 30 40 50 [HBrO₂]/10⁻⁵ mol L⁻¹ 2.00 0.70 0.48 0.38 0.32 0.27

Under these conditions, the reaction is essentially irreversible. Confirm that this reaction obeys second-order kinetics, and calculate the rate constant k_4 . [8 marks]

- (b) The rate constant for the reverse reaction has been measured by others, and has been found to be $k_{-4} = 1 \times 10^{-8} \,\mathrm{L^2 mol^{-2} s^{-1}}$. What is the equilibrium constant for this reaction under these experimental conditions? [2 marks]
- (c) The mechanism for this reaction is thought to be

$$HBrO_2 + H^+ \xrightarrow{k_{4a}} H_2BrO_2^+$$

$$HBrO_2 + H_2BrO_2^+ \xrightarrow{k_{4b}} HOBr + BrO_3^- + 2H^+$$

The protonation equilibrium is fast. Show that this mechanism predicts a second-order dependence of the rate on the ${\rm HBrO_2}$ concentration. [8 marks]

(d) You should find that your rate law implies a dependence of the rate on the hydrogen ion concentration.³ Why were Försterling and Varga able to observe a simple second-order dependence of the rate on HBrO₂ in the experiment described above? [2 marks]

Bonus: Under the conditions of this experiment, both $HBrO_2$ and $H_2BrO_2^+$ are present in significant amounts, but spectroscopically these two species are indistinguishable. Thus, the measured value of $[HBrO_2]$ is really the total amount, $[HBrO_2]_{tot} = [HBrO_2] + [H_2BrO_2^+]$. Rewrite your rate law in terms of $[HBrO_2]_{tot}$ (instead of $[HBrO_2]$).

Hint: You will need to reuse an equation you had already used in developing the rate law to eliminate $[H_2BrO_2^+]$.

3. Describe the continuous flow experiment and explain how it can be used to study fast reactions. What is the most important disadvantage of this technique? [10 marks]

¹This reaction is part of the mechanism of the Belousov-Zhabotinsky reaction. The number of these rate constants is a convention connected to the appearance of this reaction in that mechanism.

² J. Phys. Chem. **97**, 7932 (1993). In their experiments, the concentration of HBrO₂ was monitored continuously by a spectrophotometric method. The data presented here are just points chosen at regular intervals from their time series.

³The prediction isn't quite right, for reasons explored in the bonus question.