Chemistry 2740 Spring 2009 Test 1

Time: 50 minutes Questions: 6 Marks: 41 Aids allowed: calculator, 8.5×11 -inch formula sheet Useful data is given at the end of this exam paper.

- 1. Name the thermodynamic quantity corresponding to each of these symbols: [1 mark each]
 - (a) $\Delta_c U_m$ (b) C_V (c) $\Delta_r h$
- 2. Explain why $\Delta U \approx \Delta H$ for reactions occurring entirely in solution. [2 marks]
- 3. Give a qualitative example (no calculations) which shows that the work is pathdependent. [4 marks]
- 4. Starting from first principles, prove that $\Delta U = q_V$. [4 marks]
- 5. Calculate the enthalpy of formation of sodium hydride at -20° C. [10 marks]
- 6. A classic demonstration involves putting some liquid nitrogen in a balloon, getting rid of as much air as possible, sealing it (usually with a clip), and then watching the balloon expand as the liquid nitrogen evaporates. Typically, we put in a lot of liquid nitrogen and let the balloon explode. However, suppose that we have put just 5 mL of liquid nitrogen (density 0.8086 g/mL) in a balloon of sufficient capacity that it doesn't explode.
 - (a) The boiling point of liquid nitrogen (i.e. the initial temperature) is 77.34 K. If we let the nitrogen evaporate completely and return to room temperature (20°C) at a constant external pressure of 1 atm, what is the work done during this process? Is work done on or by the system? The molar mass of nitrogen is 28.013 48 g/mol. [8 marks]
 - (b) The enthalpy of vaporization of liquid nitrogen at its boiling point is 5.586 kJ/mol. The molar heat capacity of nitrogen gas (in J K⁻¹mol⁻¹) is given by the equation

$$C_{p,m} = A + BT + CT^2,$$

where A = 28.3, $B = 2.54 \times 10^{-3}$, $C = 5.4 \times 10^{-5}$, and T is in Kelvin. Calculate the heat gained by the nitrogen during this process. [8 marks]

(c) Calculate the change in internal energy of the nitrogen during this process. [2 marks]

Useful data

$$\begin{split} R &= 8.314\,472\,\mathrm{J\,K^{-1}mol^{-1}}\\ 1\,\mathrm{m^3} &= 1000\,\mathrm{L}\\ 1\,\mathrm{atm} &= 101\,325\,\mathrm{Pa} \end{split}$$

To convert degrees Celsius to Kelvin, add 273.15.

Standard thermodynamic data at 1 bar and $298.15\mathrm{K}$		
Species	$\Delta_f H^\circ$	$C_{p,m}$
	$kJ mol^{-1}$	$ m JK^{-1}mol^{-1}$
$H_{2(g)}$	0	28.82
$Na_{(s)}$	0	28.2
NaH _(s)	-56.44	36.37