Chemistry 2850 Test 2

Time: 50 minQuestions: 8Marks: 49Aids permitted: calculator, one 8.5×11 -inch formula sheetUseful data is given on the reverse of this page.Write all answers in the booklets provided.

- 1. Briefly describe the standard hydrogen electrode. [3 marks]
- 2. What does "salting in" mean? What theory studied in class predicts this effect? Explain briefly. [4 marks]
- 3. Many reactions involve water as a reactant or product. When treating such reactions, we generally ignore the activity of the water, i.e. set its value to unity. Why is it often reasonable to do this? [2 marks]
- 4. Suppose that we measured the equilibrium constant of a reaction as a function of temperature. Briefly describe the procedure you could use to obtain the enthalpy of reaction from these data. [3 marks]
- 5. There are some cases where simple solubility calculations for ionic compounds based on $K_{\rm sp}$ give very bad answers, even when we properly account for the effects of nonideal behavior. Describe a possible chemical complication which might throw off a naïve calculation. What chemical principle is involved? [4 marks]
- 6. The entropy of liquid water at 25°C is 69.95 J K⁻¹mol⁻¹. The heat capacity of liquid water is 75.40 J K⁻¹mol⁻¹. The enthalpy of fusion (melting) of ice at 0°C is 6007 J/mol. What is the entropy of ice at 0°C? [6 marks]
- 7. (a) Assuming that ΔH° and ΔS° are constant, calculate the standard Gibbs energy change for the reaction of calcium oxide with carbon dioxide to form calcium carbonate at 5°C. [10 marks]
 - (b) The partial pressure of carbon dioxide in air is about 4×10^{-4} bar. If we keep a sample of calcium oxide in air at 5°C, will it spontaneously convert to calcium carbonate? [4 marks]
- 8. Nickel-cadmium (nicad) batteries are based on the following half-cell reactions:

$$\begin{split} \operatorname{NiO}(\operatorname{OH})_{(s)} + \operatorname{H}_2\operatorname{O}_{(l)} + \operatorname{e}^- &\to \operatorname{Ni}(\operatorname{OH})_{2(s)} + \operatorname{OH}_{(aq)}^- \\ \operatorname{Cd}_{(s)} + 2\operatorname{OH}_{(aq)}^- &\to \operatorname{Cd}(\operatorname{OH})_{2(s)} + 2\operatorname{e}^- \end{split}$$

- (a) The emf of a nicad cell is 1.4 V. The standard reduction potential of cadmium (II) hydroxide is -0.809 V. What is the standard reduction potential of NiO(OH)?
 [3 marks]
- (b) What is the standard free energy of formation of NiO(OH)? [10 marks]

Useful data

 $F = 96\,485.3383\,{\rm C/mol}$

 $R=8.314\,472\,{\rm J\,K^{-1}mol^{-1}}$

To convert degrees Celsius to Kelvin, add 273.15.

Standard thermodynamic data at 1 bar and $25^\circ\mathrm{C}$

Species	$\frac{\Delta_f H^\circ}{\text{kJ/mol}}$	$\frac{\Delta_f G^\circ}{\text{kJ/mol}}$	$\frac{C_{P,m}}{\mathrm{JK^{-1}mol^{-1}}}$
$CO_{2(g)}$	-393.51	-394.37	37.1
$CaCO_{3(s)}$	-1206.9	-1128.8	81.9
CaO _(s)	-634.92	-603.30	42.8
$Cd(OH)_{2(s)}$		-469.8	
$H_2O_{(1)}$	-285.830	-237.140	75.40
$Ni(OH)_{2(s)}$		-444	