
Chemistry 2850 Spring 2007 Practice Final Examination
Solutions

1. A reversible process is one which remains in equilibrium throughout.

2. No. The half-life of a second-order reaction depends on the initial concentration of
reactant, so at minimum we need to know this concentration to make sense of this
number.

3. The slope of a graph of log10 k vs
√

I should be 1.02zAzB at low ionic strengths. We
therefore learn something about the charges of the reactants, namely the value of the
product of these charges.

4. Specific acid catalysis refers to catalysis by H+, while general acid catalysis refers to
catalysis by any acid.

5. Here is my diagram:
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The work done by the system is the area enclosed by the cycle.

6. The comparison is perhaps best presented in the form of a table:1

1Note that there is plenty of scope to disagree with my classification of similarities and differences, or to
add other points.
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Relaxation Flash Photolysis

Similarity: • Reactants premixed • Reactants premixed

Difference: • Reaction allowed to go to
equilibrium

• No reaction occurs after
mixing

Similarity: • System disturbed by a sud-
den change in conditions
(temperature, pressure)

• System disturbed by a light
flash

Difference: • Disturbance changes the
equilibrium point

• Disturbance initiates the re-
action

Difference: • System starts close to the
new equilibrium

• System starts as far from
equilibrium as we want
(controlled by initial con-
centrations)

Similarity: • A system property (e.g. ab-
sorbance at a particular
wavelength) is followed to
the new equilibrium

• A system property (e.g. ab-
sorbance at a particular
wavelength) is followed to
equilibrium

Difference: • Obtain the relaxation time
from the data

• Data treatment depends on
kinetics, just as in a normal
kinetics experiment

Applies to: • Any kind of reaction • Only reactions which can
be initiated by an injec-
tion of energy but where the
reactants can otherwise be
mixed without reacting

• Usually solution-phase ki-
netics

• Gas- or solution-phase ki-
netics

7.
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The overall reaction is
CH4 + 2O2 → CO2 + 2H2O.

Note that I’ve written the two half-reactions so that they add up to the overall reaction.
Accordingly, we have z = 8.

∆G◦ = ∆fG
◦
CO2

+ 2∆fG
◦
H2O −

(
∆fG

◦
CH4

+ 2∆fG
◦
O2

)
= −394.37 + 2(−237.140)− (−50.72) kJ/mol = −817.93 kJ/mol.

∴ E = −∆G◦

zF
= −−817.93× 103 J/mol

8(96 485.3383 C/mol)

= 1.0597 V.

8. Heat isn’t a state function, so it doesn’t make sense to talk of “the change in heat”.
To put it another way, bodies don’t contain heat so the heat evolved during a process
can’t be thought of as the change of a property.

9. We use the equation2

k =
kBT

h
e∆‡S◦/Re−∆‡H◦/(RT ).

2Given the repetitive nature of this calculation, I just programmed this formula into my calculator to fill
out the table. In an ideal world, I would show a sample calculation, but if you’re reasonably sure you got
the calculation right, feel free to just give your values as I did here.
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Figure 1: Arrhenius plot for question 9.

T/K 300 350 400 450 500
k/s−1 0.35 1.2× 102 1.0× 104 3.3× 105 5.3× 106

The Arrhenius plot is perfectly linear (figure 1). The slope and intercept are as follows:

slope = −12 404 K,

intercept = 40.26.

From the slope and intercept, we calculate

E = −R(slope) = −(8.314 472 J K−1mol−1)(−12 404 K)

= 103 kJ/mol.

A = eintercept = e40.26

= 3.1× 1017 s−1.

On the other hand, working directly from the entropy and enthalpy of activation, we
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would calculate

E = ∆‡H◦ + RT

= 100 kJ/mol + (8.314 472× 10−3 kJ K−1mol−1)(300 K)

= 102 kJ/mol.

A =
kBT

h
e1+∆‡S◦/R

=
(1.380 650 3× 10−23 J/K)(300 K)

6.626 068 8× 10−34 J/Hz
exp

(
1 +

80 J K−1mol−1

8.314 472 J K−1mol−1

)
= 2.6× 1017 s−1.

These values are very similar to those we got from the graph. The small differences
are attributable to a combination of factors: rounding in the intermediate steps of the
calculation, and the somewhat arbitrary choice of 300K for the transition-state theory
calculations. The conclusion we can reach is that the dependence of the preexponential
factor and activation energy on T predicted by transition-state theory are unimportant
over temperature ranges of a few hundred Kelvin.

10. (a)
HF(aq) 
 H+

(aq) + F−
(aq)

∆rG
◦ = −RT ln Ka

= −(8.314 472 J K−1mol−1)(298.15 K) ln(6.6× 10−4)

= 18.2 kJ/mol.

But ∆rG
◦ = ∆fG

◦
H+ + ∆fG

◦
F− −∆fG

◦
HF.

∴ ∆fG
◦
HF = ∆fG

◦
H+ + ∆fG

◦
F− −∆rG

◦

= 0 + (−281.52)− 18.2 kJ/mol = −299.7 kJ/mol.

(b)

Ka =
(aH+)(aF−)

aHF

=
γ2
±[H+][F−]

[HF]
.

In this last last equation, I left out factors of the standard concentration. We
would guess that the dissociation of water would not be very significant here.
Thus [H+] ≈ [F−]. Furthermore, [HF] = 0.10 − [H+]. Thus, if we knew γ±, we
could calculate [H+] by solving the quadratic equation

γ2
±[H+]

2 −Ka(0.10− [H+]) = 0.

The solution of this quadratic equation is

[H+] =
1

2γ2
±

{
−Ka +

√
K2

a + 4(0.10)Kaγ2
±

}
. (1)
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We also have
log10 γ± = −0.51|z+z−|

√
I

and

I =
1

2

(
[H+](1)2 + [F−](−1)2

)
= [H+].

Since z+ = 1 and z− = −1, we get

log10 γ± = −0.51
√

[H+]. (2)

We will start with a guess for γ± (≈ 1), then use equation 1 to calculate [H+], then
calculate γ± using equation 2, then use our improved estimate of γ± in equation 1
to calculate an improved estimate of [H+], and so on. Here are my results, again
obtained with my programmable calculator

γ± [H+]/mol L−1

1 0.0078
0.9015 0.0086
0.8967 0.0087
0.8965 0.0087
0.8965 0.0087

Therefore, [H+] = [F−] = 0.0087 mol/L.

(c)

pH = − log10 aH+

= − log10

(
γ±[H+]

)
= − log10 (0.8965(0.0087)) = 2.11.

11. (a) i. A → P

ii. B is an intermediate. Apply the steady-state approximation:

d[B]

dt
= k1[A]2 − k−1[B]− k2[A][B] ≈ 0.

∴ [B] ≈ k1[A]2

k−1 + k2[A]]
.

From the reaction stoichiometry, we have

v =
d[P]

dt
.

From the mechanism,

d[P]dt = 3k2[A][B].

∴ v ≈ 3k1k2[A]3

k−1 + k2[A]]
.
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iii. If k2[A] � k−1, we get

v =
3k1k2

k−1

[A]3,

i.e. a simple third-order rate law with an observed rate constant k = 3k1k2/k−1.

(b)

d[A]

dt
= −k[A]3

∴
d[A]

[A]3
= −k dt

∴
∫ [A]

[A]0

da

a3
= −k

∫ t

0

dt′

∴ −kt =

∫ [A]

[A]0

a−3da

=
1

1− 3
a1−3

∣∣∣∣[A]

[A]0

= −1

2

(
1

[A]2
− 1

[A]20

)
∴

1

[A]2
= kt +

1

[A]20

(c) According to our integrated rate law, we should plot 1/[A]2 vs t to test for third-
order kinetics. My graph is shown as figure 2. The graph is linear. We therefore
conclude that the data are consistent with third-order kinetics. The slope should
be k. We find, by linear regression,

k = 0.040× 106 L2mol−2min−1 = 4.0× 104 L2mol−2min−1.
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Figure 2: Test of third-order kinetics for problem 11c.
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