Chemistry 2850 Practice Test 3 Solutions - 1. The half-life is the time it takes for the difference between the concentration at time t and the equilibrium concentration to drop to half its initial value. - 2. In a relaxation experiment, we start with a system at equilibrium. We then make a rapid change in conditions which changes the equilibrium constant, and we follow the concentration as it moves toward the new equilibrium. 3. In this case, ΔU is negative (which is why I show the size of the difference as $-\Delta U$ in my sketch). - 4. There are a number of possible answers, but the most obvious one is that the two molecules might collide in the wrong orientation. For instance, in the reaction $H + HBr \rightarrow H_2 + Br$, the hydrogen atom has to hit the H end of the HBr molecule, otherwise this reaction can't happen. - 5. The entropy of activation is the difference in entropy between the transition state and the reactants of a reaction. - 6. We need the concentration of the reactant A as a function of time: | | [A] | [B] | |-------------|------------|------------------| | Initial | 0.624 | 0 | | Change | -2x | \boldsymbol{x} | | At time t | 0.624 - 2x | \boldsymbol{x} | Figure 1: First-order plot for question 6. Since [B] = x, we have $$[A] = 0.624 - 2[B].$$ We can therefore construct the following table: | t/min | 10 | 20 | 30 | 40 | |--|--------|--------|--------|--------| | $[A]/\text{mol } L^{-1}$ | 0.446 | 0.318 | 0.224 | 0.164 | | $\ln\left([\mathrm{A}]/\mathrm{mol}\mathrm{L}^{-1}\right)$ | -0.807 | -1.146 | -1.496 | -1.808 | | $[\mathrm{A}]^{-1}/\mathrm{L}\mathrm{mol}^{-1}$ | 2.242 | 3.145 | 4.464 | 6.098 | Note: Many of you will be able to do the calculations of $\ln[A]$ and of $[A]^{-1}$ directly in your calculator as part of the process of obtaining the regression lines. In this case, you might not give a table of values for these quantities as I have done here, provide you explain in a few words what you did. We can now draw our first and second order graphs, which are shown in figures 1 and 2. The first-order graph obviously looks linear while the second-order plot isn't. Accordingly, we can conclude that the reaction obeys first-order kinetics. The rate constant is the negative of the slope of this graph. By linear regression, we find a slope of $-0.0335 \,\mathrm{min}^{-1}$, which corresponds to a rate constant of $$k = 0.0335 \,\mathrm{min}^{-1}$$. **Important note:** In a question like this one, you *must* draw both graphs to exclude the possibility that the data fits both rate laws equally well. 7. (a) We start by calculating T^{-1} and $\ln k$: Figure 2: Second-order plot for question 6. $$\frac{T^{-1}/10^{-3} \text{K}^{-1}}{\ln(k/\text{min}^{-1})} \quad 3.411 \quad 3.299 \quad 3.193 \quad 3.095 \quad 3.002 \quad 2.914$$ Linear regression of the graph of $\ln k$ vs T^{-1} gives the following data: slope = $$-4590 \,\mathrm{K} = -\frac{E}{R}$$ intercept = $6.744 = \ln A$ Therefore $$E = -(8.314472 \,\mathrm{J \, K^{-1} mol^{-1}})(-4590 \,\mathrm{K}) = 38.2 \,\mathrm{kJ/mol}$$ $A = e^{6.744} = 849 \,\mathrm{min^{-1}}$ (b) $$\Delta^{\ddagger}H^{\circ} = E - RT$$ $$= 38.2 \,\text{kJ/mol} - (8.314472 \times 10^{-3} \,\text{kJ K}^{-1} \text{mol}^{-1})(298.15 \,\text{K})$$ $$= 35.7 \,\text{kJ/mol}$$ $$A = \frac{849 \,\text{min}^{-1}}{60 \,\text{s/min}} = 14.1 \,\text{s}^{-1}.$$ $$\Delta^{\ddagger}S^{\circ} = R \left[\ln \left(\frac{Ah}{k_B T} \right) - 1 \right]$$ $$= (8.314472 \,\text{J K}^{-1} \text{mol}^{-1}) \left[\ln \left(\frac{(14.1 \,\text{s}^{-1})(6.626 \,068 \,8 \times 10^{-34} \,\text{J/Hz})}{(1.380 \,650 \,3 \times 10^{-23} \,\text{J/K})(298.15 \,\text{K})} \right) - 1 \right]$$ $$= -231 \,\text{J K}^{-1} \text{mol}^{-1}$$