Chemistry 2850 Practice Test 2

Time: 50 min

Marks: 49

Aids permitted: calculator, one 8.5×11 -inch formula sheet

- 1. Give one statement of the third law of thermodynamics. [2 marks]
- 2. What is wrong with the following statement? [2 marks]

 ΔG gives the maximum work which a system can perform at constant temperature and pressure.

- 3. (a) Write down an expression for $d(\Delta G^{\circ})$ in terms of dP and dT. [1 mark]
 - (b) Suppose that we increase the pressure on a system at equilibrium holding the temperature constant. What determines the sign of the change in ΔG° ? [2 marks]
 - (c) Suppose that, for a given system, an increase in pressure causes an increase in ΔG° . What effect does this have on the equilibrium constant? Is your answer consistent with Le Chatelier's principle? Explain briefly. [6 marks]
- 4. Derive an equation for the cubic expansion coefficient of an ideal gas. Write your answer in terms of P, T and n. [4 marks]
- 5. Haemoglobin Howick (HH) is a naturally occurring mutant form of haemoglobin. It normally exists in solution as a dimer (two copies of the protein associated together) but can also form a tetramer:

 $2 \dim er \rightleftharpoons tetramer$.

The equilibrium constant for this reaction is 3.3×10^5 (standard state = 1 mol/L) for deoxygenated HH. If a solution of $100 \,\mu\text{mol/L}$ of HH monomers is made, what are the equilibrium concentrations of dimer and tetramer? [8 marks]

6. What emf (voltage) would be generated by the cell

$$Pt, H_2(1 bar)|H^+(0.03 mol/kg)||Cl^-(0.004 mol/kg)|Ag, AgCl$$

at 25°C assuming ideal behavior? [8 marks]

- 7. The standard enthalpy of formation of carbon dioxide is $-393.51\,\mathrm{kJ/mol}$. Calculate the standard free energy of formation of carbon dioxide. [6 marks]
- 8. Consider the following equilibrium vapor pressure data for benzene:

$$T/^{\circ}$$
C 3.0 35.3 72.6 80.1
 P/mmHg 30 150 600 760

Determine the enthalpy of vaporization of benzene from these data. [10 marks]

Hint: Start by writing a chemical reaction representing the process.

Useful data

 $F = 96\,485.3383\,{\rm C/mol}$

 $R = 8.314\,472\,\mathrm{J\,K^{-1}mol^{-1}}$

 $1\,\mathrm{bar} = 750\,\mathrm{mmHg}$

To convert degrees Celsius to Kelvin, add 273.15.

Standard Entropies	
at 25°C and 1 bar	
Species	$\bar{S}^{\circ}/\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
$C_{(s)}$ (graphite)	5.74
$CO_{2(g)}$	213.785
$O_{2(g)}$	205.152

Reduction process	$\mathcal{E}^{\circ}/\mathrm{V}$
$2H_{(aq)}^{+} + 2e^{-} \rightarrow H_{2(g)}$	0
$AgCl_{(s)}^{-} + e^{-} \rightarrow Ag_{(s)} + Cl_{(aq)}^{-}$	0.22233