Chemistry 2850 Practice Test 1

Time: 50 min

Marks: 50

Aids permitted: calculator, one 8.5×11 -inch formula sheet

- 1. Describe the processes in each of the steps of a Carnot cycle. For each step, say whether work is done on or by the system. [4 marks]
- 2. Using a diagram, explain why a reversible isothermal expansion produces more work than any real isothermal expansion of the same substance. [6 marks]
- 3. Describe the Joule-Thompson experiment. Explain what is measured in this experiment and what information this gives us. [8 marks]
- 4. An ideal gas for which $C_{V,m} = 12.5 \,\mathrm{J\,K^{-1}mol^{-1}}$ initially at 300 K and 1 bar is heated at constant volume until the pressure reaches 5 bar. Calculate $w, q, \Delta U, \Delta H$ and ΔS for this process (per mole). [12 marks]
- 5. (a) What is the enthalpy of combustion of α -D-glucose at 10°C? [6 marks]
 - (b) If you burned 1 g of glucose in a bomb calorimeter near 25°C, how much heat would be released? The molar mass of glucose is 180.156 g/mol. [6 marks]
- 6. Estimate the standard enthalpy of formation of methane from data available on this exam paper. [8 marks]

Useful data $R = 8.314472 \,\mathrm{J} \,\mathrm{K}^{-1} \mathrm{mol}^{-1}$

To convert degrees Celsius to Kelvin, add 273.15.

The gas-phase carbon-hydrogen bond enthalpy is 413 kJ/mol.

Standard thermodynamic data at 1 bar and 25°C

Species	$\frac{\Delta_f H^\circ}{\mathrm{kJ/mol}}$	$\frac{C_{P,m}}{\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}}$
$C_{(g)}$	716.68	20.8
$C_6H_{12}O_{6(s)}$ (α -D-glucose)	-1274.4	218.16
$CO_{2(g)}$	-393.51	37.1
$H_{(g)}$	217.998	20.786
$H_2O_{(1)}$	-285.830	75.40
$O_{2(g)}$	0	29.35