Appendix I

Properties of Exponential and Logarithmic Functions

- 1. $a^0 = 1$
- 2. $a^{x}a^{y} = a^{x+y}$
- 3. $a^{x}/a^{y} = a^{x-y}$
- 4. $a^{-x} = 1/a^x$
- 5. $(a^x)^y = a^{xy}$
- 6. $a^{1/x} = \sqrt[x]{a}$
- 7. $(ab)^x = a^x b^x$
- 8. Logarithms are inverse functions of exponentials:
 - $\log_a a^x = x$
 - $a^{\log_a x} = x$
- 9. log is usually a shorthand notation for \log_{10} .¹ I generally prefer to explicitly write down the base, but feel free to use the shorthand if you prefer.
 - In is called the "natural logarithm". $\ln x$ means the same thing as $\log_e x$, where e = 2.71828... is Napier's number. This very important logarithm comes up in many equations in chemistry. For our purposes, you mostly need to remember that it's just a logarithm that behaves like all other logarithms.

¹One of the reasons that I like to explicitly write down the base is that some people, mostly mathematicians, use log for the natural logarithm rather than the base-10 logarithm. Writing down the base avoids any possible confusion.

- 10. $\log_a 1 = 0$
- 11. $\log_a(xy) = \log_a x + \log_a y$
- 12. $\log_a(x/y) = \log_a x \log_a y$
- 13. $\log_a(1/x) = -\log_a x$
- 14. $\log_a(x^y) = y \log_a x$

Appendix J

Table of Integrals

This is not by any means a complete table of integrals. However, the integrals given here should be sufficient to work through the examples and exercises in this book.

1.
$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

2.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}$$

3.
$$\int \frac{dx}{x} = \ln x$$

4.
$$\int \frac{dx}{(a+bx)(c+ex)} = \frac{1}{ae-bc} \ln\left(\frac{c+ex}{a+bx}\right)$$

5.
$$\int \frac{dx}{x^2(a+bx)} = \frac{b}{a^2} \ln\left(\frac{a+bx}{x}\right) - \frac{1}{ax}$$

6.
$$\int \frac{dx}{x(a+bx)^2} = \frac{1}{a^2} \ln\left(\frac{x}{a+bx}\right) + \frac{1}{a(a+bx)}$$

7. To integrate
$$\int dx (a+bx+cx^2)^{-1}$$
, first evaluate $q = 4ac-b^2$. Then,

$$\int \frac{dx}{a+bx+cx^2} = \begin{cases} \frac{2}{\sqrt{q}} \arctan\left(\frac{2cx+b}{\sqrt{q}}\right) & \text{if } q > 0, \\ \frac{1}{\sqrt{-q}} \ln\left(\frac{2cx+b-\sqrt{-q}}{2cx+b+\sqrt{-q}}\right) & \text{if } q < 0. \end{cases}$$