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Review: quantum mechanics of atoms

Review: quantum mechanics of atoms
Hydrogenic atoms

The hydrogenic atom (one nucleus, one electron) is
exactly solvable.

The solutions of this problem are called atomic orbitals.

The square of the orbital wavefunction gives a probability density for
the electron, i.e. the probability per unit volume of finding the
electron near a particular point in space.
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Review: quantum mechanics of atoms

Review: quantum mechanics of atoms
Hydrogenic atoms (continued)

Orbital shapes:

1s 2p 3dx2−y2 3dz2
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Review: quantum mechanics of atoms

Review: quantum mechanics of atoms
Multielectron atoms

Consider He, the simplest multielectron atom:

Electron-electron repulsion makes it impossible to solve for the
electronic wavefunctions exactly.

A fourth quantum number, ms , which is associated with a new type
of angular momentum called spin, enters into the theory.
For electrons, ms = 1

2 or −1
2 .

Pauli exclusion principle: No two electrons can have identical sets of
quantum numbers.

Consequence: Only two electrons can occupy an orbital.
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The hydrogen molecular ion

The quantum mechanics of molecules

H+
2 is the simplest possible molecule:

two nuclei
one electron

Three-body problem: no exact solutions

However, the nuclei are more than 1800 time heavier than the
electron, so the electron moves much faster than the nuclei.
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The hydrogen molecular ion

Born-Oppenheimer approximation

Treat the nuclei as if they are immobile and separated by R to solve
for the electron’s wavefunction (molecular orbital) and orbital
(electronic) energy.
In a single-electron molecule,

Orbital energy = electron kinetic energy + electron-nuclear attraction

This problem can be solved exactly because of the single electron and
simple (cylindrically symmetric) geometry.

Ground-state molecular orbital:
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The hydrogen molecular ion

Born-Oppenheimer approximation (continued)

The orbital (electronic) energy depends on R (distance between nuclei):
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The hydrogen molecular ion

Born-Oppenheimer approximation (continued)

To get the total energy of the molecule, we need to also consider the
nuclear-nuclear repulsion:
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The hydrogen molecular ion

Born-Oppenheimer approximation (continued)

The sum of the electronic (orbital) and nuclear-nuclear repulsion energies
is the effective potential energy experienced by the nuclei:

Marc R. Roussel Introduction to molecular orbitals January 2, 2020 9 / 24



The hydrogen molecular ion

Equilibrium bond length

F = −dVeff

dR
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The hydrogen molecular ion

Key lessons learned from H+
2

1 Electrons in molecules do not belong to particular atoms.
Rather, electrons occupy molecular orbitals which extend over the
entire molecule.
As with atomic orbitals, we can have several molecular orbitals
(occupied or unoccupied).

2 The energy of a molecular orbital depends on the positions of the
nuclei (on the separation R in a diatomic molecule).

3 There is an equilibrium geometry (a point where the forces are zero
or, equivalently, a point of minimum energy).
This geometry defines the bond lengths from which we get (for
example) covalent atomic radii.
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Hydrogen

The molecular orbitals of H2

When we add a second electron, it becomes impossible to solve the
electronic Schrödinger equation exactly.
(We had the same problem with the helium atom.)
In order to gain some insight into the molecular orbitals (MOs) of H2,
consider the following limits:

If the separation between the nuclei, R, is large, then we should have
the equivalent of two hydrogen atoms, i.e.

MO→ 1sA ⊕ 1sB

A B

If we imagine pushing the nuclei together, we would have two electrons
and a single centre of positive charge with charge +2, i.e. the
equivalent of a helium atom. Then

MO→ 1s(He)

Marc R. Roussel Introduction to molecular orbitals January 2, 2020 12 / 24



Hydrogen

LCAO-MO theory

Since the MO can be described in terms of atomic orbitals (AOs) in
some special limits, we may be able to approximate the MOs of H2

using AOs at any internuclear separation.

LCAO-MO: This term applies to an approximate MO constructed as a
Linear Combination of Atomic Orbitals.

For the H2 ground-state MO,

add−−→

Note: Here, colors are used to distinguish the AOs from the two
atoms, not to indicate phases.
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Hydrogen

Sigma bonding orbital

Here is a plot of the atomic and molecular orbital wavefunctions along
the bonding (z) axis:
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This is a sigma (σ) bonding orbital.
Characteristics:

Bonding: lots of electron density (square of orbital wavefunction)
between the two nuclei

Sigma symmetry: rotationally symmetric about the bonding axis
(same symmetry as a cylinder)
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Hydrogen

Sigma antibonding orbital

Adding the AOs is not the only way to combine them.

The only physical requirement is that we treat the two nuclei
symmetrically since they are identical.

We can also subtract the AOs.

subtract−−−−−→

Note: Here the colors in the MO do represent different phases.
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Hydrogen

Sigma antibonding orbital (continued)

Along the z axis, we have the following orbital wavefunctions:
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Hydrogen

Sigma antibonding orbital (continued)

The electron density (square of the wavefunction) along the z axis
has the following appearance:
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This is a sigma antibonding (σ∗) orbital.
Characteristics:

Antibonding: depleted electron density between the two nuclei
Sigma symmetry: rotationally symmetric about the bonding axis
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MO diagrams

MO diagrams

An MO diagram shows the energies of the MOs of a molecule and
(often) of the AOs they were generated from.

Rule: The number of MOs is equal to the number of AOs included
in the calculation.

MO diagram for H2:
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MO diagrams

Orbital occupancy

The same rules apply to filling MOs as do to AOs:
1 Fill them starting with the lowest energy orbital.
2 Only two electrons can occupy an orbital.
3 Apply Hund’s rule to the filling of degenerate MOs.

Orbital occupancy for the ground state of H2: (1σ)2

There are also excited states, such as (1σ)1(2σ∗)1.

Note from our MO diagram that the energy of the 2σ∗ orbital is
farther above the energy of the AOs than the 1σ is below.

The (1σ)1(2σ∗)1 configuration is not energetically favorable and should
dissociate into H + H.
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MO diagrams

Effective potentials for many-electron molecules

We can calculate an effective potential governing the motion of the
nuclei for many-electron molecules using the Born-Oppenheimer
approximation, much as we did for H+

2 .

There are however more terms in the electronic energy:

Electronic energy =

 electron
kinetic

energies

+

(
electron-electron

repulsion

)

+

(
electron-nuclear

attraction

)
We still have

Veff = electronic energy + nuclear-nuclear repulsion
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MO diagrams

Effective potentials and orbital occupancy

The stability or instability of a particular electronic configuration can
also be connected to the shape of its effective potential energy curve:

equilibrium bond length

H+H

V
ef
f

R

(1σ)2

(1σ)1(2σ*)1

Recall: F = −dVeff/dR
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MO diagrams

Bond order and MO theory

General rule:

Bond order =
1

2




Number of
electrons in

bonding
orbitals

−


Number of
electrons in
antibonding

orbitals




Example: For the H2 (1σ)2 configuration,

Bond order =
1

2
(2− 0) = 1.

Note that this agrees with the Lewis diagram bond order.

Example: For the H2 (1σ)1(2σ∗)1 configuration,

Bond order =
1

2
(1− 1) = 0.

Marc R. Roussel Introduction to molecular orbitals January 2, 2020 23 / 24



MO diagrams

He2

The ground state of an He2 molecule would be (1σ)2(2σ∗)2.

Bond order =
1

2
(2− 2) = 0.

That’s the MO explanation why He2 doesn’t exist.

However, He+
2 should be stable:

Ground-state electronic configuration (1σ)2(2σ∗)1

Bond order = 1
2 (2− 1) = 1

2
No equivalent Lewis diagram
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